1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
|
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/tracked_objects.h"
#include <math.h>
#include "base/format_macros.h"
#include "base/message_loop.h"
#include "base/string_util.h"
#include "base/stringprintf.h"
#include "base/threading/thread_restrictions.h"
using base::TimeDelta;
namespace tracked_objects {
namespace {
// Flag to compile out almost all of the task tracking code.
static const bool kTrackAllTaskObjects = true;
// When ThreadData is first initialized, should we start in an ACTIVE state to
// record all of the startup-time tasks, or should we start up DEACTIVATED, so
// that we only record after parsing the command line flag --enable-tracking.
// Note that the flag may force either state, so this really controls only the
// period of time up until that flag is parsed. If there is no flag seen, then
// this state may prevail for much or all of the process lifetime.
static const ThreadData::Status kInitialStartupState = ThreadData::ACTIVE;
} // anonymous namespace.
//------------------------------------------------------------------------------
// Death data tallies durations when a death takes place.
void DeathData::RecordDeath(const Duration& queue_duration,
const Duration& run_duration) {
++count_;
queue_duration_ += queue_duration;
run_duration_ += run_duration;
}
int DeathData::AverageMsRunDuration() const {
if (run_duration_ == Duration() || !count_)
return 0;
// Add half of denominator to achieve rounding.
return static_cast<int>(run_duration_.InMilliseconds() + count_ / 2) /
count_;
}
int DeathData::AverageMsQueueDuration() const {
if (queue_duration_ == Duration() || !count_)
return 0;
// Add half of denominator to achieve rounding.
return (static_cast<int>(queue_duration_.InMilliseconds() + count_ / 2) /
count_);
}
void DeathData::AddDeathData(const DeathData& other) {
count_ += other.count_;
queue_duration_ += other.queue_duration_;
run_duration_ += other.run_duration_;
}
void DeathData::WriteHTML(std::string* output) const {
if (!count_)
return;
base::StringAppendF(output, "%s:%d, ",
(count_ == 1) ? "Life" : "Lives", count_);
// Be careful to leave static_casts intact, as the type returned by
// InMilliseconds() may not always be an int, even if it can generally fit
// into an int.
base::StringAppendF(output, "Run:%dms(%dms/life) ",
static_cast<int>(run_duration_.InMilliseconds()),
AverageMsRunDuration());
base::StringAppendF(output, "Queue:%dms(%dms/life) ",
static_cast<int>(queue_duration_.InMilliseconds()),
AverageMsQueueDuration());
}
base::DictionaryValue* DeathData::ToValue() const {
base::DictionaryValue* dictionary = new base::DictionaryValue;
dictionary->Set("count", base::Value::CreateIntegerValue(count_));
dictionary->Set("run_ms",
base::Value::CreateIntegerValue(run_duration_.InMilliseconds()));
dictionary->Set("queue_ms",
base::Value::CreateIntegerValue(queue_duration_.InMilliseconds()));
return dictionary;
}
void DeathData::Clear() {
count_ = 0;
queue_duration_ = Duration();
run_duration_ = Duration();
}
//------------------------------------------------------------------------------
BirthOnThread::BirthOnThread(const Location& location,
const ThreadData& current)
: location_(location),
birth_thread_(¤t) {}
//------------------------------------------------------------------------------
Births::Births(const Location& location, const ThreadData& current)
: BirthOnThread(location, current),
birth_count_(1) { }
//------------------------------------------------------------------------------
// ThreadData maintains the central data for all births and deaths.
// TODO(jar): We should pull all these static vars together, into a struct, and
// optimize layout so that we benefit from locality of reference during accesses
// to them.
// A TLS slot which points to the ThreadData instance for the current thread. We
// do a fake initialization here (zeroing out data), and then the real in-place
// construction happens when we call tls_index_.Initialize().
// static
base::ThreadLocalStorage::Slot ThreadData::tls_index_(base::LINKER_INITIALIZED);
// A lock-protected counter to assign sequence number to threads.
// static
int ThreadData::thread_number_counter_ = 0;
// static
ThreadData* ThreadData::all_thread_data_list_head_ = NULL;
// static
ThreadData::ThreadDataPool* ThreadData::unregistered_thread_data_pool_ = NULL;
// static
base::Lock* ThreadData::list_lock_;
// static
ThreadData::Status ThreadData::status_ = ThreadData::UNINITIALIZED;
ThreadData::ThreadData(const std::string& suggested_name)
: next_(NULL),
is_a_worker_thread_(false) {
DCHECK_GE(suggested_name.size(), 0u);
thread_name_ = suggested_name;
PushToHeadOfList();
}
ThreadData::ThreadData() : next_(NULL), is_a_worker_thread_(true) {
int thread_number;
{
base::AutoLock lock(*list_lock_);
thread_number = ++thread_number_counter_;
}
base::StringAppendF(&thread_name_, "WorkerThread-%d", thread_number);
PushToHeadOfList();
}
ThreadData::~ThreadData() {}
void ThreadData::PushToHeadOfList() {
DCHECK(!next_);
base::AutoLock lock(*list_lock_);
next_ = all_thread_data_list_head_;
all_thread_data_list_head_ = this;
}
// static
void ThreadData::InitializeThreadContext(const std::string& suggested_name) {
if (!Initialize()) // Always initialize if needed.
return;
ThreadData* current_thread_data =
reinterpret_cast<ThreadData*>(tls_index_.Get());
if (current_thread_data)
return; // Browser tests instigate this.
current_thread_data = new ThreadData(suggested_name);
tls_index_.Set(current_thread_data);
}
// static
ThreadData* ThreadData::Get() {
if (!tls_index_.initialized())
return NULL; // For unittests only.
ThreadData* registered = reinterpret_cast<ThreadData*>(tls_index_.Get());
if (registered)
return registered;
// We must be a worker thread, since we didn't pre-register.
ThreadData* worker_thread_data = NULL;
{
base::AutoLock lock(*list_lock_);
if (!unregistered_thread_data_pool_->empty()) {
worker_thread_data =
const_cast<ThreadData*>(unregistered_thread_data_pool_->top());
unregistered_thread_data_pool_->pop();
}
}
// If we can't find a previously used instance, then we have to create one.
if (!worker_thread_data)
worker_thread_data = new ThreadData();
tls_index_.Set(worker_thread_data);
return worker_thread_data;
}
// static
void ThreadData::OnThreadTermination(void* thread_data) {
if (!kTrackAllTaskObjects)
return; // Not compiled in.
DCHECK(tls_index_.initialized());
if (!thread_data)
return;
reinterpret_cast<ThreadData*>(thread_data)->OnThreadTerminationCleanup();
DCHECK_EQ(tls_index_.Get(), reinterpret_cast<ThreadData*>(NULL));
}
void ThreadData::OnThreadTerminationCleanup() const {
tls_index_.Set(NULL);
if (!is_a_worker_thread_)
return;
base::AutoLock lock(*list_lock_);
unregistered_thread_data_pool_->push(this);
}
// static
void ThreadData::WriteHTML(const std::string& query, std::string* output) {
if (!ThreadData::tracking_status())
return; // Not yet initialized.
DataCollector collected_data; // Gather data.
collected_data.AddListOfLivingObjects(); // Add births that are still alive.
// Data Gathering is complete. Now to sort/process/render.
DataCollector::Collection* collection = collected_data.collection();
// Create filtering and sort comparison object.
Comparator comparator;
comparator.ParseQuery(query);
// Filter out acceptable (matching) instances.
DataCollector::Collection match_array;
for (DataCollector::Collection::iterator it = collection->begin();
it != collection->end(); ++it) {
if (comparator.Acceptable(*it))
match_array.push_back(*it);
}
comparator.Sort(&match_array);
WriteHTMLTotalAndSubtotals(match_array, comparator, output);
comparator.Clear(); // Delete tiebreaker_ instances.
output->append("</pre>");
const char* help_string = "The following are the keywords that can be used to"
" sort and aggregate the data, or to select data.<br><ul>"
"<li><b>Count</b> Number of instances seen."
"<li><b>Duration</b> Average duration in ms of Run() time."
"<li><b>TotalDuration</b> Summed durations in ms of Run() times."
"<li><b>AverageQueueDuration</b> Average duration in ms of queueing time."
"<li><b>TotalQueueDuration</b> Summed durations in ms of Run() times."
"<li><b>Birth</b> Thread on which the task was constructed."
"<li><b>Death</b> Thread on which the task was run and deleted."
"<li><b>File</b> File in which the task was contructed."
"<li><b>Function</b> Function in which the task was constructed."
"<li><b>Line</b> Line number of the file in which the task was constructed."
"</ul><br>"
"As examples:<ul>"
"<li><b>about:tracking/file</b> would sort the above data by file, and"
" aggregate data on a per-file basis."
"<li><b>about:tracking/file=Dns</b> would only list data for tasks"
" constructed in a file containing the text |Dns|."
"<li><b>about:tracking/death/duration</b> would sort the data by death"
" thread(i.e., where tasks ran) and then by the average runtime for the"
" tasks. Form an aggregation group, one per thread, showing the results on"
" each thread."
"<li><b>about:tracking/birth/death</b> would sort the above list by birth"
" thread, and then by death thread, and would aggregate data for each pair"
" of lifetime events."
"</ul>"
" The data can be reset to zero (discarding all births, deaths, etc.) using"
" <b>about:tracking/reset</b>. The existing stats will be displayed, but"
" the internal stats will be set to zero, and start accumulating afresh."
" This option is very helpful if you only wish to consider tasks created"
" after some point in time.<br><br>"
"If you wish to monitor Renderer events, be sure to run in --single-process"
" mode.";
output->append(help_string);
}
// static
void ThreadData::WriteHTMLTotalAndSubtotals(
const DataCollector::Collection& match_array,
const Comparator& comparator,
std::string* output) {
if (match_array.empty()) {
output->append("There were no tracked matches.");
return;
}
// Aggregate during printing
Aggregation totals;
for (size_t i = 0; i < match_array.size(); ++i) {
totals.AddDeathSnapshot(match_array[i]);
}
output->append("Aggregate Stats: ");
totals.WriteHTML(output);
output->append("<hr><hr>");
Aggregation subtotals;
for (size_t i = 0; i < match_array.size(); ++i) {
if (0 == i || !comparator.Equivalent(match_array[i - 1],
match_array[i])) {
// Print group's defining characteristics.
comparator.WriteSortGrouping(match_array[i], output);
output->append("<br><br>");
}
comparator.WriteSnapshotHTML(match_array[i], output);
output->append("<br>");
subtotals.AddDeathSnapshot(match_array[i]);
if (i + 1 >= match_array.size() ||
!comparator.Equivalent(match_array[i],
match_array[i + 1])) {
// Print aggregate stats for the group.
output->append("<br>");
subtotals.WriteHTML(output);
output->append("<br><hr><br>");
subtotals.Clear();
}
}
}
// static
base::DictionaryValue* ThreadData::ToValue() {
DataCollector collected_data; // Gather data.
collected_data.AddListOfLivingObjects(); // Add births that are still alive.
base::ListValue* list = collected_data.ToValue();
base::DictionaryValue* dictionary = new base::DictionaryValue();
dictionary->Set("list", list);
return dictionary;
}
Births* ThreadData::TallyABirth(const Location& location) {
BirthMap::iterator it = birth_map_.find(location);
if (it != birth_map_.end()) {
it->second->RecordBirth();
return it->second;
}
Births* tracker = new Births(location, *this);
// Lock since the map may get relocated now, and other threads sometimes
// snapshot it (but they lock before copying it).
base::AutoLock lock(lock_);
birth_map_[location] = tracker;
return tracker;
}
void ThreadData::TallyADeath(const Births& birth,
const Duration& queue_duration,
const Duration& run_duration) {
DeathMap::iterator it = death_map_.find(&birth);
DeathData* death_data;
if (it != death_map_.end()) {
death_data = &it->second;
} else {
base::AutoLock lock(lock_); // Lock since the map may get relocated now.
death_data = &death_map_[&birth];
} // Release lock ASAP.
death_data->RecordDeath(queue_duration, run_duration);
}
// static
Births* ThreadData::TallyABirthIfActive(const Location& location) {
if (!kTrackAllTaskObjects)
return NULL; // Not compiled in.
if (!tracking_status())
return NULL;
ThreadData* current_thread_data = Get();
if (!current_thread_data)
return NULL;
return current_thread_data->TallyABirth(location);
}
// static
void ThreadData::TallyRunOnNamedThreadIfTracking(
const base::TrackingInfo& completed_task,
const TrackedTime& start_of_run,
const TrackedTime& end_of_run) {
if (!kTrackAllTaskObjects)
return; // Not compiled in.
// Even if we have been DEACTIVATED, we will process any pending births so
// that our data structures (which counted the outstanding births) remain
// consistent.
const Births* birth = completed_task.birth_tally;
if (!birth)
return;
ThreadData* current_thread_data = Get();
if (!current_thread_data)
return;
// To avoid conflating our stats with the delay duration in a PostDelayedTask,
// we identify such tasks, and replace their post_time with the time they
// were scheduled (requested?) to emerge from the delayed task queue. This
// means that queueing delay for such tasks will show how long they went
// unserviced, after they *could* be serviced. This is the same stat as we
// have for non-delayed tasks, and we consistently call it queueing delay.
TrackedTime effective_post_time = completed_task.delayed_run_time.is_null()
? tracked_objects::TrackedTime(completed_task.time_posted)
: tracked_objects::TrackedTime(completed_task.delayed_run_time);
Duration queue_duration = start_of_run - effective_post_time;
Duration run_duration = end_of_run - start_of_run;
current_thread_data->TallyADeath(*birth, queue_duration, run_duration);
}
// static
void ThreadData::TallyRunOnWorkerThreadIfTracking(
const Births* birth,
const TrackedTime& time_posted,
const TrackedTime& start_of_run,
const TrackedTime& end_of_run) {
if (!kTrackAllTaskObjects)
return; // Not compiled in.
// Even if we have been DEACTIVATED, we will process any pending births so
// that our data structures (which counted the outstanding births) remain
// consistent.
if (!birth)
return;
// TODO(jar): Support the option to coalesce all worker-thread activity under
// one ThreadData instance that uses locks to protect *all* access. This will
// reduce memory (making it provably bounded), but run incrementally slower
// (since we'll use locks on TallyBirth and TallyDeath). The good news is
// that the locks on TallyDeath will be *after* the worker thread has run, and
// hence nothing will be waiting for the completion (... besides some other
// thread that might like to run). Also, the worker threads tasks are
// generally longer, and hence the cost of the lock may perchance be amortized
// over the long task's lifetime.
ThreadData* current_thread_data = Get();
if (!current_thread_data)
return;
Duration queue_duration = start_of_run - time_posted;
Duration run_duration = end_of_run - start_of_run;
current_thread_data->TallyADeath(*birth, queue_duration, run_duration);
}
// static
ThreadData* ThreadData::first() {
base::AutoLock lock(*list_lock_);
return all_thread_data_list_head_;
}
// This may be called from another thread.
void ThreadData::SnapshotBirthMap(BirthMap *output) const {
base::AutoLock lock(lock_);
for (BirthMap::const_iterator it = birth_map_.begin();
it != birth_map_.end(); ++it)
(*output)[it->first] = it->second;
}
// This may be called from another thread.
void ThreadData::SnapshotDeathMap(DeathMap *output) const {
base::AutoLock lock(lock_);
for (DeathMap::const_iterator it = death_map_.begin();
it != death_map_.end(); ++it)
(*output)[it->first] = it->second;
}
// static
void ThreadData::ResetAllThreadData() {
ThreadData* my_list = first();
for (ThreadData* thread_data = my_list;
thread_data;
thread_data = thread_data->next())
thread_data->Reset();
}
void ThreadData::Reset() {
base::AutoLock lock(lock_);
for (DeathMap::iterator it = death_map_.begin();
it != death_map_.end(); ++it)
it->second.Clear();
for (BirthMap::iterator it = birth_map_.begin();
it != birth_map_.end(); ++it)
it->second->Clear();
}
bool ThreadData::Initialize() {
if (!kTrackAllTaskObjects)
return false; // Not compiled in.
if (status_ != UNINITIALIZED)
return true;
// Initialize all leaking constants that are difficult to toggle in and out
// of existance.
// First call must be made when single threaded at startup.
// Perform the "real" TLS initialization now, and leave it intact through
// process termination.
if (!tls_index_.initialized()) // Testing may have initialized this.
tls_index_.Initialize(&ThreadData::OnThreadTermination);
DCHECK(tls_index_.initialized());
unregistered_thread_data_pool_ = new ThreadDataPool;
// TODO(jar): A linker initialized spin lock would be much safer than this
// allocation, which relies on being called while single threaded.
if (!list_lock_) // In case testing deleted this.
list_lock_ = new base::Lock;
status_ = kInitialStartupState;
return true;
}
// static
bool ThreadData::InitializeAndSetTrackingStatus(bool status) {
if (!Initialize()) // No-op if already initialized.
return false; // Not compiled in.
status_ = status ? ACTIVE : DEACTIVATED;
return true;
}
// static
bool ThreadData::tracking_status() {
return status_ == ACTIVE;
}
// static
TrackedTime ThreadData::Now() {
if (!kTrackAllTaskObjects || status_ != ACTIVE)
return TrackedTime(); // Super fast when disabled, or not compiled.
return TrackedTime::Now();
}
// static
void ThreadData::ShutdownSingleThreadedCleanup() {
// This is only called from test code, where we need to cleanup so that
// additional tests can be run.
// We must be single threaded... but be careful anyway.
if (!InitializeAndSetTrackingStatus(false))
return;
ThreadData* thread_data_list;
ThreadDataPool* final_pool;
{
base::AutoLock lock(*list_lock_);
thread_data_list = all_thread_data_list_head_;
all_thread_data_list_head_ = NULL;
final_pool = unregistered_thread_data_pool_;
unregistered_thread_data_pool_ = NULL;
}
if (final_pool) {
// The thread_data_list contains *all* the instances, and we'll use it to
// delete them. This pool has pointers to some instances, and we just
// have to drop those pointers (and not do the deletes here).
while (!final_pool->empty())
final_pool->pop();
delete final_pool;
}
// Do actual recursive delete in all ThreadData instances.
while (thread_data_list) {
ThreadData* next_thread_data = thread_data_list;
thread_data_list = thread_data_list->next();
for (BirthMap::iterator it = next_thread_data->birth_map_.begin();
next_thread_data->birth_map_.end() != it; ++it)
delete it->second; // Delete the Birth Records.
next_thread_data->birth_map_.clear();
next_thread_data->death_map_.clear();
delete next_thread_data; // Includes all Death Records.
}
// Put most global static back in pristine shape.
thread_number_counter_ = 0;
tls_index_.Set(NULL);
status_ = UNINITIALIZED;
}
//------------------------------------------------------------------------------
// Individual 3-tuple of birth (place and thread) along with death thread, and
// the accumulated stats for instances (DeathData).
Snapshot::Snapshot(const BirthOnThread& birth_on_thread,
const ThreadData& death_thread,
const DeathData& death_data)
: birth_(&birth_on_thread),
death_thread_(&death_thread),
death_data_(death_data) {
}
Snapshot::Snapshot(const BirthOnThread& birth_on_thread, int count)
: birth_(&birth_on_thread),
death_thread_(NULL),
death_data_(DeathData(count)) {
}
const std::string Snapshot::DeathThreadName() const {
if (death_thread_)
return death_thread_->thread_name();
return "Still_Alive";
}
void Snapshot::WriteHTML(std::string* output) const {
death_data_.WriteHTML(output);
base::StringAppendF(output, "%s->%s ",
birth_->birth_thread()->thread_name().c_str(),
DeathThreadName().c_str());
birth_->location().Write(true, true, output);
}
base::DictionaryValue* Snapshot::ToValue() const {
base::DictionaryValue* dictionary = new base::DictionaryValue;
dictionary->Set("death_data", death_data_.ToValue());
dictionary->Set("birth_thread",
base::Value::CreateStringValue(birth_->birth_thread()->thread_name()));
dictionary->Set("death_thread",
base::Value::CreateStringValue(DeathThreadName()));
dictionary->Set("location", birth_->location().ToValue());
return dictionary;
}
//------------------------------------------------------------------------------
// DataCollector
DataCollector::DataCollector() {
if (!kTrackAllTaskObjects)
return; // Not compiled in.
// Get an unchanging copy of a ThreadData list.
ThreadData* my_list = ThreadData::first();
// Gather data serially.
// This hackish approach *can* get some slighly corrupt tallies, as we are
// grabbing values without the protection of a lock, but it has the advantage
// of working even with threads that don't have message loops. If a user
// sees any strangeness, they can always just run their stats gathering a
// second time.
for (ThreadData* thread_data = my_list;
thread_data;
thread_data = thread_data->next()) {
Append(*thread_data);
}
}
DataCollector::~DataCollector() {
}
void DataCollector::Append(const ThreadData& thread_data) {
// Get copy of data.
ThreadData::BirthMap birth_map;
thread_data.SnapshotBirthMap(&birth_map);
ThreadData::DeathMap death_map;
thread_data.SnapshotDeathMap(&death_map);
for (ThreadData::DeathMap::const_iterator it = death_map.begin();
it != death_map.end(); ++it) {
collection_.push_back(Snapshot(*it->first, thread_data, it->second));
global_birth_count_[it->first] -= it->first->birth_count();
}
for (ThreadData::BirthMap::const_iterator it = birth_map.begin();
it != birth_map.end(); ++it) {
global_birth_count_[it->second] += it->second->birth_count();
}
}
DataCollector::Collection* DataCollector::collection() {
return &collection_;
}
void DataCollector::AddListOfLivingObjects() {
for (BirthCount::iterator it = global_birth_count_.begin();
it != global_birth_count_.end(); ++it) {
if (it->second > 0)
collection_.push_back(Snapshot(*it->first, it->second));
}
}
base::ListValue* DataCollector::ToValue() const {
base::ListValue* list = new base::ListValue;
for (size_t i = 0; i < collection_.size(); ++i) {
list->Append(collection_[i].ToValue());
}
return list;
}
//------------------------------------------------------------------------------
// Aggregation
Aggregation::Aggregation()
: birth_count_(0) {
}
Aggregation::~Aggregation() {
}
void Aggregation::AddDeathSnapshot(const Snapshot& snapshot) {
AddBirth(snapshot.birth());
death_threads_[snapshot.death_thread()]++;
AddDeathData(snapshot.death_data());
}
void Aggregation::AddBirths(const Births& births) {
AddBirth(births);
birth_count_ += births.birth_count();
}
void Aggregation::AddBirth(const BirthOnThread& birth) {
AddBirthPlace(birth.location());
birth_threads_[birth.birth_thread()]++;
}
void Aggregation::AddBirthPlace(const Location& location) {
locations_[location]++;
birth_files_[location.file_name()]++;
}
void Aggregation::WriteHTML(std::string* output) const {
if (locations_.size() == 1) {
locations_.begin()->first.Write(true, true, output);
} else {
base::StringAppendF(output, "%" PRIuS " Locations. ", locations_.size());
if (birth_files_.size() > 1) {
base::StringAppendF(output, "%" PRIuS " Files. ", birth_files_.size());
} else {
base::StringAppendF(output, "All born in %s. ",
birth_files_.begin()->first.c_str());
}
}
if (birth_threads_.size() > 1) {
base::StringAppendF(output, "%" PRIuS " BirthingThreads. ",
birth_threads_.size());
} else {
base::StringAppendF(output, "All born on %s. ",
birth_threads_.begin()->first->thread_name().c_str());
}
if (death_threads_.size() > 1) {
base::StringAppendF(output, "%" PRIuS " DeathThreads. ",
death_threads_.size());
} else {
if (death_threads_.begin()->first) {
base::StringAppendF(output, "All deleted on %s. ",
death_threads_.begin()->first->thread_name().c_str());
} else {
output->append("All these objects are still alive.");
}
}
if (birth_count_ > 1)
base::StringAppendF(output, "Births=%d ", birth_count_);
DeathData::WriteHTML(output);
}
void Aggregation::Clear() {
birth_count_ = 0;
birth_files_.clear();
locations_.clear();
birth_threads_.clear();
DeathData::Clear();
death_threads_.clear();
}
//------------------------------------------------------------------------------
// Comparison object for sorting.
Comparator::Comparator()
: selector_(NIL),
tiebreaker_(NULL),
combined_selectors_(0),
use_tiebreaker_for_sort_only_(false) {}
void Comparator::Clear() {
if (tiebreaker_) {
tiebreaker_->Clear();
delete tiebreaker_;
tiebreaker_ = NULL;
}
use_tiebreaker_for_sort_only_ = false;
selector_ = NIL;
}
// static
Comparator::Selector Comparator::FindSelector(const std::string& keyword) {
// Sorting and aggretation keywords, which specify how to sort the data, or
// can specify a required match from the specified field in the record.
if (0 == keyword.compare("count"))
return COUNT;
if (0 == keyword.compare("totalduration"))
return TOTAL_RUN_DURATION;
if (0 == keyword.compare("duration"))
return AVERAGE_RUN_DURATION;
if (0 == keyword.compare("totalqueueduration"))
return TOTAL_QUEUE_DURATION;
if (0 == keyword.compare("averagequeueduration"))
return AVERAGE_QUEUE_DURATION;
if (0 == keyword.compare("birth"))
return BIRTH_THREAD;
if (0 == keyword.compare("death"))
return DEATH_THREAD;
if (0 == keyword.compare("file"))
return BIRTH_FILE;
if (0 == keyword.compare("function"))
return BIRTH_FUNCTION;
if (0 == keyword.compare("line"))
return BIRTH_LINE;
if (0 == keyword.compare("reset"))
return RESET_ALL_DATA;
return UNKNOWN_KEYWORD;
}
bool Comparator::operator()(const Snapshot& left,
const Snapshot& right) const {
switch (selector_) {
case BIRTH_THREAD:
if (left.birth_thread() != right.birth_thread() &&
left.birth_thread()->thread_name() !=
right.birth_thread()->thread_name())
return left.birth_thread()->thread_name() <
right.birth_thread()->thread_name();
break;
case DEATH_THREAD:
if (left.death_thread() != right.death_thread() &&
left.DeathThreadName() !=
right.DeathThreadName()) {
if (!left.death_thread())
return true;
if (!right.death_thread())
return false;
return left.DeathThreadName() <
right.DeathThreadName();
}
break;
case BIRTH_FILE:
if (left.location().file_name() != right.location().file_name()) {
int comp = strcmp(left.location().file_name(),
right.location().file_name());
if (comp)
return 0 > comp;
}
break;
case BIRTH_FUNCTION:
if (left.location().function_name() != right.location().function_name()) {
int comp = strcmp(left.location().function_name(),
right.location().function_name());
if (comp)
return 0 > comp;
}
break;
case BIRTH_LINE:
if (left.location().line_number() != right.location().line_number())
return left.location().line_number() <
right.location().line_number();
break;
case COUNT:
if (left.count() != right.count())
return left.count() > right.count(); // Sort large at front of vector.
break;
case AVERAGE_RUN_DURATION:
if (!left.count() || !right.count())
break;
if (left.AverageMsRunDuration() != right.AverageMsRunDuration())
return left.AverageMsRunDuration() > right.AverageMsRunDuration();
break;
case TOTAL_RUN_DURATION:
if (!left.count() || !right.count())
break;
if (left.run_duration() != right.run_duration())
return left.run_duration() > right.run_duration();
break;
case AVERAGE_QUEUE_DURATION:
if (!left.count() || !right.count())
break;
if (left.AverageMsQueueDuration() != right.AverageMsQueueDuration())
return left.AverageMsQueueDuration() > right.AverageMsQueueDuration();
break;
case TOTAL_QUEUE_DURATION:
if (!left.count() || !right.count())
break;
if (left.queue_duration() != right.queue_duration())
return left.queue_duration() > right.queue_duration();
break;
default:
break;
}
if (tiebreaker_)
return tiebreaker_->operator()(left, right);
return false;
}
void Comparator::Sort(DataCollector::Collection* collection) const {
std::sort(collection->begin(), collection->end(), *this);
}
bool Comparator::Equivalent(const Snapshot& left,
const Snapshot& right) const {
switch (selector_) {
case BIRTH_THREAD:
if (left.birth_thread() != right.birth_thread() &&
left.birth_thread()->thread_name() !=
right.birth_thread()->thread_name())
return false;
break;
case DEATH_THREAD:
if (left.death_thread() != right.death_thread() &&
left.DeathThreadName() != right.DeathThreadName())
return false;
break;
case BIRTH_FILE:
if (left.location().file_name() != right.location().file_name()) {
int comp = strcmp(left.location().file_name(),
right.location().file_name());
if (comp)
return false;
}
break;
case BIRTH_FUNCTION:
if (left.location().function_name() != right.location().function_name()) {
int comp = strcmp(left.location().function_name(),
right.location().function_name());
if (comp)
return false;
}
break;
case COUNT:
case AVERAGE_RUN_DURATION:
case TOTAL_RUN_DURATION:
case AVERAGE_QUEUE_DURATION:
case TOTAL_QUEUE_DURATION:
// We don't produce separate aggretation when only counts or times differ.
break;
default:
break;
}
if (tiebreaker_ && !use_tiebreaker_for_sort_only_)
return tiebreaker_->Equivalent(left, right);
return true;
}
bool Comparator::Acceptable(const Snapshot& sample) const {
if (required_.size()) {
switch (selector_) {
case BIRTH_THREAD:
if (sample.birth_thread()->thread_name().find(required_) ==
std::string::npos)
return false;
break;
case DEATH_THREAD:
if (sample.DeathThreadName().find(required_) == std::string::npos)
return false;
break;
case BIRTH_FILE:
if (!strstr(sample.location().file_name(), required_.c_str()))
return false;
break;
case BIRTH_FUNCTION:
if (!strstr(sample.location().function_name(), required_.c_str()))
return false;
break;
default:
break;
}
}
if (tiebreaker_ && !use_tiebreaker_for_sort_only_)
return tiebreaker_->Acceptable(sample);
return true;
}
void Comparator::SetTiebreaker(Selector selector, const std::string& required) {
if (selector == selector_ || NIL == selector)
return;
combined_selectors_ |= selector;
if (NIL == selector_) {
selector_ = selector;
if (required.size())
required_ = required;
return;
}
if (tiebreaker_) {
if (use_tiebreaker_for_sort_only_) {
Comparator* temp = new Comparator;
temp->tiebreaker_ = tiebreaker_;
tiebreaker_ = temp;
}
} else {
tiebreaker_ = new Comparator;
DCHECK(!use_tiebreaker_for_sort_only_);
}
tiebreaker_->SetTiebreaker(selector, required);
}
bool Comparator::IsGroupedBy(Selector selector) const {
return 0 != (selector & combined_selectors_);
}
void Comparator::SetSubgroupTiebreaker(Selector selector) {
if (selector == selector_ || NIL == selector)
return;
if (!tiebreaker_) {
use_tiebreaker_for_sort_only_ = true;
tiebreaker_ = new Comparator;
tiebreaker_->SetTiebreaker(selector, "");
} else {
tiebreaker_->SetSubgroupTiebreaker(selector);
}
}
void Comparator::ParseKeyphrase(const std::string& key_phrase) {
std::string required;
// Watch for: "sort_key=value" as we parse.
size_t equal_offset = key_phrase.find('=', 0);
if (key_phrase.npos != equal_offset) {
// There is a value that must be matched for the data to display.
required = key_phrase.substr(equal_offset + 1, key_phrase.npos);
}
std::string keyword(key_phrase.substr(0, equal_offset));
keyword = StringToLowerASCII(keyword);
Selector selector = FindSelector(keyword);
if (selector == UNKNOWN_KEYWORD)
return;
if (selector == RESET_ALL_DATA) {
ThreadData::ResetAllThreadData();
return;
}
SetTiebreaker(selector, required);
}
bool Comparator::ParseQuery(const std::string& query) {
// Parse each keyphrase between consecutive slashes.
for (size_t i = 0; i < query.size();) {
size_t slash_offset = query.find('/', i);
ParseKeyphrase(query.substr(i, slash_offset - i));
if (query.npos == slash_offset)
break;
i = slash_offset + 1;
}
// Select subgroup ordering (if we want to display the subgroup)
SetSubgroupTiebreaker(COUNT);
SetSubgroupTiebreaker(AVERAGE_RUN_DURATION);
SetSubgroupTiebreaker(TOTAL_RUN_DURATION);
SetSubgroupTiebreaker(BIRTH_THREAD);
SetSubgroupTiebreaker(DEATH_THREAD);
SetSubgroupTiebreaker(BIRTH_FUNCTION);
SetSubgroupTiebreaker(BIRTH_FILE);
SetSubgroupTiebreaker(BIRTH_LINE);
return true;
}
bool Comparator::WriteSortGrouping(const Snapshot& sample,
std::string* output) const {
bool wrote_data = false;
switch (selector_) {
case BIRTH_THREAD:
base::StringAppendF(output, "All new on %s ",
sample.birth_thread()->thread_name().c_str());
wrote_data = true;
break;
case DEATH_THREAD:
if (sample.death_thread()) {
base::StringAppendF(output, "All deleted on %s ",
sample.DeathThreadName().c_str());
} else {
output->append("All still alive ");
}
wrote_data = true;
break;
case BIRTH_FILE:
base::StringAppendF(output, "All born in %s ",
sample.location().file_name());
break;
case BIRTH_FUNCTION:
output->append("All born in ");
sample.location().WriteFunctionName(output);
output->push_back(' ');
break;
default:
break;
}
if (tiebreaker_ && !use_tiebreaker_for_sort_only_) {
wrote_data |= tiebreaker_->WriteSortGrouping(sample, output);
}
return wrote_data;
}
void Comparator::WriteSnapshotHTML(const Snapshot& sample,
std::string* output) const {
sample.death_data().WriteHTML(output);
if (!(combined_selectors_ & BIRTH_THREAD) ||
!(combined_selectors_ & DEATH_THREAD))
base::StringAppendF(output, "%s->%s ",
(combined_selectors_ & BIRTH_THREAD) ? "*" :
sample.birth().birth_thread()->thread_name().c_str(),
(combined_selectors_ & DEATH_THREAD) ? "*" :
sample.DeathThreadName().c_str());
sample.birth().location().Write(!(combined_selectors_ & BIRTH_FILE),
!(combined_selectors_ & BIRTH_FUNCTION),
output);
}
} // namespace tracked_objects
|