summaryrefslogtreecommitdiffstats
path: root/cc/base/math_util.h
blob: 6512bb41ba718756907568f69f9cc35c0b5efeaf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
// Copyright 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef CC_BASE_MATH_UTIL_H_
#define CC_BASE_MATH_UTIL_H_

#include <algorithm>
#include <cmath>
#include <vector>

#include "base/logging.h"
#include "base/memory/scoped_ptr.h"
#include "cc/base/cc_export.h"
#include "ui/gfx/geometry/box_f.h"
#include "ui/gfx/geometry/point3_f.h"
#include "ui/gfx/geometry/point_f.h"
#include "ui/gfx/geometry/scroll_offset.h"
#include "ui/gfx/geometry/size.h"
#include "ui/gfx/transform.h"

namespace base {
class Value;
namespace trace_event {
class TracedValue;
}
}  // namespace base

namespace gfx {
class QuadF;
class Rect;
class RectF;
class Transform;
class Vector2dF;
class Vector2d;
class Vector3dF;
}

namespace cc {

struct HomogeneousCoordinate {
  HomogeneousCoordinate(SkMScalar x, SkMScalar y, SkMScalar z, SkMScalar w) {
    vec[0] = x;
    vec[1] = y;
    vec[2] = z;
    vec[3] = w;
  }

  bool ShouldBeClipped() const { return w() <= 0.0; }

  gfx::PointF CartesianPoint2d() const {
    if (w() == SK_MScalar1)
      return gfx::PointF(x(), y());

    // For now, because this code is used privately only by MathUtil, it should
    // never be called when w == 0, and we do not yet need to handle that case.
    DCHECK(w());
    SkMScalar inv_w = SK_MScalar1 / w();
    return gfx::PointF(x() * inv_w, y() * inv_w);
  }

  gfx::Point3F CartesianPoint3d() const {
    if (w() == SK_MScalar1)
      return gfx::Point3F(x(), y(), z());

    // For now, because this code is used privately only by MathUtil, it should
    // never be called when w == 0, and we do not yet need to handle that case.
    DCHECK(w());
    SkMScalar inv_w = SK_MScalar1 / w();
    return gfx::Point3F(x() * inv_w, y() * inv_w, z() * inv_w);
  }

  SkMScalar x() const { return vec[0]; }
  SkMScalar y() const { return vec[1]; }
  SkMScalar z() const { return vec[2]; }
  SkMScalar w() const { return vec[3]; }

  SkMScalar vec[4];
};

class CC_EXPORT MathUtil {
 public:
  static const double kPiDouble;
  static const float kPiFloat;

  static double Deg2Rad(double deg) { return deg * kPiDouble / 180.0; }
  static double Rad2Deg(double rad) { return rad * 180.0 / kPiDouble; }

  static float Deg2Rad(float deg) { return deg * kPiFloat / 180.0f; }
  static float Rad2Deg(float rad) { return rad * 180.0f / kPiFloat; }

  static float Round(float f) {
    return (f > 0.f) ? std::floor(f + 0.5f) : std::ceil(f - 0.5f);
  }
  static double Round(double d) {
    return (d > 0.0) ? std::floor(d + 0.5) : std::ceil(d - 0.5);
  }

  // Returns true if rounded up value does not overflow, false otherwise.
  template <typename T>
  static bool VerifyRoundup(T n, T mul) {
    return mul && (n <= (std::numeric_limits<T>::max() -
                         (std::numeric_limits<T>::max() % mul)));
  }

  // Rounds up a given |n| to be a multiple of |mul|, but may overflow.
  // Examples:
  //    - RoundUp(123, 50) returns 150.
  //    - RoundUp(-123, 50) returns -100.
  template <typename T>
  static T UncheckedRoundUp(T n, T mul) {
    static_assert(std::numeric_limits<T>::is_integer,
                  "T must be an integer type");
    DCHECK(VerifyRoundup(n, mul));
    return RoundUpInternal(n, mul);
  }

  // Similar to UncheckedRoundUp(), but dies with a CRASH() if rounding up a
  // given |n| overflows T.
  template <typename T>
  static T CheckedRoundUp(T n, T mul) {
    static_assert(std::numeric_limits<T>::is_integer,
                  "T must be an integer type");
    CHECK(VerifyRoundup(n, mul));
    return RoundUpInternal(n, mul);
  }

  // Returns true if rounded down value does not underflow, false otherwise.
  template <typename T>
  static bool VerifyRoundDown(T n, T mul) {
    return mul && (n >= (std::numeric_limits<T>::min() -
                         (std::numeric_limits<T>::min() % mul)));
  }

  // Rounds down a given |n| to be a multiple of |mul|, but may underflow.
  // Examples:
  //    - RoundDown(123, 50) returns 100.
  //    - RoundDown(-123, 50) returns -150.
  template <typename T>
  static T UncheckedRoundDown(T n, T mul) {
    static_assert(std::numeric_limits<T>::is_integer,
                  "T must be an integer type");
    DCHECK(VerifyRoundDown(n, mul));
    return RoundDownInternal(n, mul);
  }

  // Similar to UncheckedRoundDown(), but dies with a CRASH() if rounding down a
  // given |n| underflows T.
  template <typename T>
  static T CheckedRoundDown(T n, T mul) {
    static_assert(std::numeric_limits<T>::is_integer,
                  "T must be an integer type");
    CHECK(VerifyRoundDown(n, mul));
    return RoundDownInternal(n, mul);
  }

  template <typename T> static T ClampToRange(T value, T min, T max) {
    return std::min(std::max(value, min), max);
  }

  // Background: Existing transform code does not do the right thing in
  // MapRect / MapQuad / ProjectQuad when there is a perspective projection that
  // causes one of the transformed vertices to go to w < 0. In those cases, it
  // is necessary to perform clipping in homogeneous coordinates, after applying
  // the transform, before dividing-by-w to convert to cartesian coordinates.
  //
  // These functions return the axis-aligned rect that encloses the correctly
  // clipped, transformed polygon.
  static gfx::Rect MapEnclosingClippedRect(const gfx::Transform& transform,
                                           const gfx::Rect& rect);
  static gfx::RectF MapClippedRect(const gfx::Transform& transform,
                                   const gfx::RectF& rect);
  static gfx::Rect ProjectEnclosingClippedRect(const gfx::Transform& transform,
                                               const gfx::Rect& rect);
  static gfx::RectF ProjectClippedRect(const gfx::Transform& transform,
                                       const gfx::RectF& rect);

  // This function is only valid when the transform preserves 2d axis
  // alignment and the resulting rect will not be clipped.
  static gfx::Rect MapEnclosedRectWith2dAxisAlignedTransform(
      const gfx::Transform& transform,
      const gfx::Rect& rect);

  // Returns an array of vertices that represent the clipped polygon. After
  // returning, indexes from 0 to num_vertices_in_clipped_quad are valid in the
  // clipped_quad array. Note that num_vertices_in_clipped_quad may be zero,
  // which means the entire quad was clipped, and none of the vertices in the
  // array are valid.
  static void MapClippedQuad(const gfx::Transform& transform,
                             const gfx::QuadF& src_quad,
                             gfx::PointF clipped_quad[8],
                             int* num_vertices_in_clipped_quad);
  static bool MapClippedQuad3d(const gfx::Transform& transform,
                               const gfx::QuadF& src_quad,
                               gfx::Point3F clipped_quad[8],
                               int* num_vertices_in_clipped_quad);

  static gfx::RectF ComputeEnclosingRectOfVertices(const gfx::PointF vertices[],
                                                   int num_vertices);
  static gfx::RectF ComputeEnclosingClippedRect(
      const HomogeneousCoordinate& h1,
      const HomogeneousCoordinate& h2,
      const HomogeneousCoordinate& h3,
      const HomogeneousCoordinate& h4);

  // NOTE: These functions do not do correct clipping against w = 0 plane, but
  // they correctly detect the clipped condition via the boolean clipped.
  static gfx::QuadF MapQuad(const gfx::Transform& transform,
                            const gfx::QuadF& quad,
                            bool* clipped);
  static gfx::QuadF MapQuad3d(const gfx::Transform& transform,
                              const gfx::QuadF& q,
                              gfx::Point3F* p,
                              bool* clipped);
  static gfx::PointF MapPoint(const gfx::Transform& transform,
                              const gfx::PointF& point,
                              bool* clipped);
  static gfx::Point3F MapPoint(const gfx::Transform&,
                               const gfx::Point3F&,
                               bool* clipped);
  static gfx::QuadF ProjectQuad(const gfx::Transform& transform,
                                const gfx::QuadF& quad,
                                bool* clipped);
  static gfx::PointF ProjectPoint(const gfx::Transform& transform,
                                  const gfx::PointF& point,
                                  bool* clipped);
  // Identical to the above function, but coerces the homogeneous coordinate to
  // a 3d rather than a 2d point.
  static gfx::Point3F ProjectPoint3D(const gfx::Transform& transform,
                                     const gfx::PointF& point,
                                     bool* clipped);

  static gfx::Vector2dF ComputeTransform2dScaleComponents(const gfx::Transform&,
                                                          float fallbackValue);

  // Makes a rect that has the same relationship to input_outer_rect as
  // scale_inner_rect has to scale_outer_rect. scale_inner_rect should be
  // contained within scale_outer_rect, and likewise the rectangle that is
  // returned will be within input_outer_rect at a similar relative, scaled
  // position.
  static gfx::RectF ScaleRectProportional(const gfx::RectF& input_outer_rect,
                                          const gfx::RectF& scale_outer_rect,
                                          const gfx::RectF& scale_inner_rect);

  // Returns the smallest angle between the given two vectors in degrees.
  // Neither vector is assumed to be normalized.
  static float SmallestAngleBetweenVectors(const gfx::Vector2dF& v1,
                                           const gfx::Vector2dF& v2);

  // Projects the |source| vector onto |destination|. Neither vector is assumed
  // to be normalized.
  static gfx::Vector2dF ProjectVector(const gfx::Vector2dF& source,
                                      const gfx::Vector2dF& destination);

  // Conversion to value.
  static scoped_ptr<base::Value> AsValue(const gfx::Size& s);
  static scoped_ptr<base::Value> AsValue(const gfx::Rect& r);
  static bool FromValue(const base::Value*, gfx::Rect* out_rect);
  static scoped_ptr<base::Value> AsValue(const gfx::PointF& q);

  static void AddToTracedValue(const char* name,
                               const gfx::Size& s,
                               base::trace_event::TracedValue* res);
  static void AddToTracedValue(const char* name,
                               const gfx::SizeF& s,
                               base::trace_event::TracedValue* res);
  static void AddToTracedValue(const char* name,
                               const gfx::Rect& r,
                               base::trace_event::TracedValue* res);
  static void AddToTracedValue(const char* name,
                               const gfx::PointF& q,
                               base::trace_event::TracedValue* res);
  static void AddToTracedValue(const char* name,
                               const gfx::Point3F&,
                               base::trace_event::TracedValue* res);
  static void AddToTracedValue(const char* name,
                               const gfx::Vector2d& v,
                               base::trace_event::TracedValue* res);
  static void AddToTracedValue(const char* name,
                               const gfx::Vector2dF& v,
                               base::trace_event::TracedValue* res);
  static void AddToTracedValue(const char* name,
                               const gfx::ScrollOffset& v,
                               base::trace_event::TracedValue* res);
  static void AddToTracedValue(const char* name,
                               const gfx::QuadF& q,
                               base::trace_event::TracedValue* res);
  static void AddToTracedValue(const char* name,
                               const gfx::RectF& rect,
                               base::trace_event::TracedValue* res);
  static void AddToTracedValue(const char* name,
                               const gfx::Transform& transform,
                               base::trace_event::TracedValue* res);
  static void AddToTracedValue(const char* name,
                               const gfx::BoxF& box,
                               base::trace_event::TracedValue* res);

  // Returns a base::Value representation of the floating point value.
  // If the value is inf, returns max double/float representation.
  static double AsDoubleSafely(double value);
  static float AsFloatSafely(float value);

  // Returns vector that x axis (1,0,0) transforms to under given transform.
  static gfx::Vector3dF GetXAxis(const gfx::Transform& transform);

  // Returns vector that y axis (0,1,0) transforms to under given transform.
  static gfx::Vector3dF GetYAxis(const gfx::Transform& transform);

 private:
  template <typename T>
  static T RoundUpInternal(T n, T mul) {
    return (n > 0) ? ((n + mul - 1) / mul) * mul : (n / mul) * mul;
  }

  template <typename T>
  static T RoundDownInternal(T n, T mul) {
    return (n > 0) ? (n / mul) * mul : (n == 0) ? 0
                                                : ((n - mul + 1) / mul) * mul;
  }
};

}  // namespace cc

#endif  // CC_BASE_MATH_UTIL_H_