1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
|
// Copyright 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/math_util.h"
#include <cmath>
#include <limits>
#include "ui/gfx/quad_f.h"
#include "ui/gfx/rect.h"
#include "ui/gfx/rect_conversions.h"
#include "ui/gfx/rect_f.h"
#include "ui/gfx/transform.h"
#include "ui/gfx/vector2d_f.h"
namespace cc {
const double MathUtil::PI_DOUBLE = 3.14159265358979323846;
const float MathUtil::PI_FLOAT = 3.14159265358979323846f;
const double MathUtil::EPSILON = 1e-9;
static HomogeneousCoordinate projectHomogeneousPoint(const gfx::Transform& transform, const gfx::PointF& p)
{
// In this case, the layer we are trying to project onto is perpendicular to ray
// (point p and z-axis direction) that we are trying to project. This happens when the
// layer is rotated so that it is infinitesimally thin, or when it is co-planar with
// the camera origin -- i.e. when the layer is invisible anyway.
if (!transform.matrix().getDouble(2, 2))
return HomogeneousCoordinate(0, 0, 0, 1);
double x = p.x();
double y = p.y();
double z = -(transform.matrix().getDouble(2, 0) * x + transform.matrix().getDouble(2, 1) * y + transform.matrix().getDouble(2, 3)) / transform.matrix().getDouble(2, 2);
// implicit definition of w = 1;
double outX = x * transform.matrix().getDouble(0, 0) + y * transform.matrix().getDouble(0, 1) + z * transform.matrix().getDouble(0, 2) + transform.matrix().getDouble(0, 3);
double outY = x * transform.matrix().getDouble(1, 0) + y * transform.matrix().getDouble(1, 1) + z * transform.matrix().getDouble(1, 2) + transform.matrix().getDouble(1, 3);
double outZ = x * transform.matrix().getDouble(2, 0) + y * transform.matrix().getDouble(2, 1) + z * transform.matrix().getDouble(2, 2) + transform.matrix().getDouble(2, 3);
double outW = x * transform.matrix().getDouble(3, 0) + y * transform.matrix().getDouble(3, 1) + z * transform.matrix().getDouble(3, 2) + transform.matrix().getDouble(3, 3);
return HomogeneousCoordinate(outX, outY, outZ, outW);
}
static HomogeneousCoordinate mapHomogeneousPoint(const gfx::Transform& transform, const gfx::Point3F& p)
{
double x = p.x();
double y = p.y();
double z = p.z();
// implicit definition of w = 1;
double outX = x * transform.matrix().getDouble(0, 0) + y * transform.matrix().getDouble(0, 1) + z * transform.matrix().getDouble(0, 2) + transform.matrix().getDouble(0, 3);
double outY = x * transform.matrix().getDouble(1, 0) + y * transform.matrix().getDouble(1, 1) + z * transform.matrix().getDouble(1, 2) + transform.matrix().getDouble(1, 3);
double outZ = x * transform.matrix().getDouble(2, 0) + y * transform.matrix().getDouble(2, 1) + z * transform.matrix().getDouble(2, 2) + transform.matrix().getDouble(2, 3);
double outW = x * transform.matrix().getDouble(3, 0) + y * transform.matrix().getDouble(3, 1) + z * transform.matrix().getDouble(3, 2) + transform.matrix().getDouble(3, 3);
return HomogeneousCoordinate(outX, outY, outZ, outW);
}
static HomogeneousCoordinate computeClippedPointForEdge(const HomogeneousCoordinate& h1, const HomogeneousCoordinate& h2)
{
// Points h1 and h2 form a line in 4d, and any point on that line can be represented
// as an interpolation between h1 and h2:
// p = (1-t) h1 + (t) h2
//
// We want to compute point p such that p.w == epsilon, where epsilon is a small
// non-zero number. (but the smaller the number is, the higher the risk of overflow)
// To do this, we solve for t in the following equation:
// p.w = epsilon = (1-t) * h1.w + (t) * h2.w
//
// Once paramter t is known, the rest of p can be computed via p = (1-t) h1 + (t) h2.
// Technically this is a special case of the following assertion, but its a good idea to keep it an explicit sanity check here.
DCHECK(h2.w != h1.w);
// Exactly one of h1 or h2 (but not both) must be on the negative side of the w plane when this is called.
DCHECK(h1.shouldBeClipped() ^ h2.shouldBeClipped());
double w = 0.00001; // or any positive non-zero small epsilon
double t = (w - h1.w) / (h2.w - h1.w);
double x = (1-t) * h1.x + t * h2.x;
double y = (1-t) * h1.y + t * h2.y;
double z = (1-t) * h1.z + t * h2.z;
return HomogeneousCoordinate(x, y, z, w);
}
static inline void expandBoundsToIncludePoint(float& xmin, float& xmax, float& ymin, float& ymax, const gfx::PointF& p)
{
xmin = std::min(p.x(), xmin);
xmax = std::max(p.x(), xmax);
ymin = std::min(p.y(), ymin);
ymax = std::max(p.y(), ymax);
}
static inline void addVertexToClippedQuad(const gfx::PointF& newVertex, gfx::PointF clippedQuad[8], int& numVerticesInClippedQuad)
{
clippedQuad[numVerticesInClippedQuad] = newVertex;
numVerticesInClippedQuad++;
}
gfx::Rect MathUtil::mapClippedRect(const gfx::Transform& transform, const gfx::Rect& srcRect)
{
return gfx::ToEnclosingRect(mapClippedRect(transform, gfx::RectF(srcRect)));
}
gfx::RectF MathUtil::mapClippedRect(const gfx::Transform& transform, const gfx::RectF& srcRect)
{
if (transform.IsIdentityOrTranslation())
return srcRect + gfx::Vector2dF(static_cast<float>(transform.matrix().getDouble(0, 3)), static_cast<float>(transform.matrix().getDouble(1, 3)));
// Apply the transform, but retain the result in homogeneous coordinates.
double quad[4 * 2]; // input: 4 x 2D points
quad[0] = srcRect.x();
quad[1] = srcRect.y();
quad[2] = srcRect.right();
quad[3] = srcRect.y();
quad[4] = srcRect.right();
quad[5] = srcRect.bottom();
quad[6] = srcRect.x();
quad[7] = srcRect.bottom();
double result[4 * 4]; // output: 4 x 4D homogeneous points
transform.matrix().map2(quad, 4, result);
HomogeneousCoordinate hc0(result[0], result[1], result[2], result[3]);
HomogeneousCoordinate hc1(result[4], result[5], result[6], result[7]);
HomogeneousCoordinate hc2(result[8], result[9], result[10], result[11]);
HomogeneousCoordinate hc3(result[12], result[13], result[14], result[15]);
return computeEnclosingClippedRect(hc0, hc1, hc2, hc3);
}
gfx::RectF MathUtil::projectClippedRect(const gfx::Transform& transform, const gfx::RectF& srcRect)
{
if (transform.IsIdentityOrTranslation())
return srcRect + gfx::Vector2dF(static_cast<float>(transform.matrix().getDouble(0, 3)), static_cast<float>(transform.matrix().getDouble(1, 3)));
// Perform the projection, but retain the result in homogeneous coordinates.
gfx::QuadF q = gfx::QuadF(srcRect);
HomogeneousCoordinate h1 = projectHomogeneousPoint(transform, q.p1());
HomogeneousCoordinate h2 = projectHomogeneousPoint(transform, q.p2());
HomogeneousCoordinate h3 = projectHomogeneousPoint(transform, q.p3());
HomogeneousCoordinate h4 = projectHomogeneousPoint(transform, q.p4());
return computeEnclosingClippedRect(h1, h2, h3, h4);
}
void MathUtil::mapClippedQuad(const gfx::Transform& transform, const gfx::QuadF& srcQuad, gfx::PointF clippedQuad[8], int& numVerticesInClippedQuad)
{
HomogeneousCoordinate h1 = mapHomogeneousPoint(transform, gfx::Point3F(srcQuad.p1()));
HomogeneousCoordinate h2 = mapHomogeneousPoint(transform, gfx::Point3F(srcQuad.p2()));
HomogeneousCoordinate h3 = mapHomogeneousPoint(transform, gfx::Point3F(srcQuad.p3()));
HomogeneousCoordinate h4 = mapHomogeneousPoint(transform, gfx::Point3F(srcQuad.p4()));
// The order of adding the vertices to the array is chosen so that clockwise / counter-clockwise orientation is retained.
numVerticesInClippedQuad = 0;
if (!h1.shouldBeClipped())
addVertexToClippedQuad(h1.cartesianPoint2d(), clippedQuad, numVerticesInClippedQuad);
if (h1.shouldBeClipped() ^ h2.shouldBeClipped())
addVertexToClippedQuad(computeClippedPointForEdge(h1, h2).cartesianPoint2d(), clippedQuad, numVerticesInClippedQuad);
if (!h2.shouldBeClipped())
addVertexToClippedQuad(h2.cartesianPoint2d(), clippedQuad, numVerticesInClippedQuad);
if (h2.shouldBeClipped() ^ h3.shouldBeClipped())
addVertexToClippedQuad(computeClippedPointForEdge(h2, h3).cartesianPoint2d(), clippedQuad, numVerticesInClippedQuad);
if (!h3.shouldBeClipped())
addVertexToClippedQuad(h3.cartesianPoint2d(), clippedQuad, numVerticesInClippedQuad);
if (h3.shouldBeClipped() ^ h4.shouldBeClipped())
addVertexToClippedQuad(computeClippedPointForEdge(h3, h4).cartesianPoint2d(), clippedQuad, numVerticesInClippedQuad);
if (!h4.shouldBeClipped())
addVertexToClippedQuad(h4.cartesianPoint2d(), clippedQuad, numVerticesInClippedQuad);
if (h4.shouldBeClipped() ^ h1.shouldBeClipped())
addVertexToClippedQuad(computeClippedPointForEdge(h4, h1).cartesianPoint2d(), clippedQuad, numVerticesInClippedQuad);
DCHECK(numVerticesInClippedQuad <= 8);
}
gfx::RectF MathUtil::computeEnclosingRectOfVertices(gfx::PointF vertices[], int numVertices)
{
if (numVertices < 2)
return gfx::RectF();
float xmin = std::numeric_limits<float>::max();
float xmax = -std::numeric_limits<float>::max();
float ymin = std::numeric_limits<float>::max();
float ymax = -std::numeric_limits<float>::max();
for (int i = 0; i < numVertices; ++i)
expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, vertices[i]);
return gfx::RectF(gfx::PointF(xmin, ymin), gfx::SizeF(xmax - xmin, ymax - ymin));
}
gfx::RectF MathUtil::computeEnclosingClippedRect(const HomogeneousCoordinate& h1, const HomogeneousCoordinate& h2, const HomogeneousCoordinate& h3, const HomogeneousCoordinate& h4)
{
// This function performs clipping as necessary and computes the enclosing 2d
// gfx::RectF of the vertices. Doing these two steps simultaneously allows us to avoid
// the overhead of storing an unknown number of clipped vertices.
// If no vertices on the quad are clipped, then we can simply return the enclosing rect directly.
bool somethingClipped = h1.shouldBeClipped() || h2.shouldBeClipped() || h3.shouldBeClipped() || h4.shouldBeClipped();
if (!somethingClipped) {
gfx::QuadF mappedQuad = gfx::QuadF(h1.cartesianPoint2d(), h2.cartesianPoint2d(), h3.cartesianPoint2d(), h4.cartesianPoint2d());
return mappedQuad.BoundingBox();
}
bool everythingClipped = h1.shouldBeClipped() && h2.shouldBeClipped() && h3.shouldBeClipped() && h4.shouldBeClipped();
if (everythingClipped)
return gfx::RectF();
float xmin = std::numeric_limits<float>::max();
float xmax = -std::numeric_limits<float>::max();
float ymin = std::numeric_limits<float>::max();
float ymax = -std::numeric_limits<float>::max();
if (!h1.shouldBeClipped())
expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, h1.cartesianPoint2d());
if (h1.shouldBeClipped() ^ h2.shouldBeClipped())
expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, computeClippedPointForEdge(h1, h2).cartesianPoint2d());
if (!h2.shouldBeClipped())
expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, h2.cartesianPoint2d());
if (h2.shouldBeClipped() ^ h3.shouldBeClipped())
expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, computeClippedPointForEdge(h2, h3).cartesianPoint2d());
if (!h3.shouldBeClipped())
expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, h3.cartesianPoint2d());
if (h3.shouldBeClipped() ^ h4.shouldBeClipped())
expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, computeClippedPointForEdge(h3, h4).cartesianPoint2d());
if (!h4.shouldBeClipped())
expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, h4.cartesianPoint2d());
if (h4.shouldBeClipped() ^ h1.shouldBeClipped())
expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, computeClippedPointForEdge(h4, h1).cartesianPoint2d());
return gfx::RectF(gfx::PointF(xmin, ymin), gfx::SizeF(xmax - xmin, ymax - ymin));
}
gfx::QuadF MathUtil::mapQuad(const gfx::Transform& transform, const gfx::QuadF& q, bool& clipped)
{
if (transform.IsIdentityOrTranslation()) {
gfx::QuadF mappedQuad(q);
mappedQuad += gfx::Vector2dF(static_cast<float>(transform.matrix().getDouble(0, 3)), static_cast<float>(transform.matrix().getDouble(1, 3)));
clipped = false;
return mappedQuad;
}
HomogeneousCoordinate h1 = mapHomogeneousPoint(transform, gfx::Point3F(q.p1()));
HomogeneousCoordinate h2 = mapHomogeneousPoint(transform, gfx::Point3F(q.p2()));
HomogeneousCoordinate h3 = mapHomogeneousPoint(transform, gfx::Point3F(q.p3()));
HomogeneousCoordinate h4 = mapHomogeneousPoint(transform, gfx::Point3F(q.p4()));
clipped = h1.shouldBeClipped() || h2.shouldBeClipped() || h3.shouldBeClipped() || h4.shouldBeClipped();
// Result will be invalid if clipped == true. But, compute it anyway just in case, to emulate existing behavior.
return gfx::QuadF(h1.cartesianPoint2d(), h2.cartesianPoint2d(), h3.cartesianPoint2d(), h4.cartesianPoint2d());
}
gfx::PointF MathUtil::mapPoint(const gfx::Transform& transform, const gfx::PointF& p, bool& clipped)
{
HomogeneousCoordinate h = mapHomogeneousPoint(transform, gfx::Point3F(p));
if (h.w > 0) {
clipped = false;
return h.cartesianPoint2d();
}
// The cartesian coordinates will be invalid after dividing by w.
clipped = true;
// Avoid dividing by w if w == 0.
if (!h.w)
return gfx::PointF();
// This return value will be invalid because clipped == true, but (1) users of this
// code should be ignoring the return value when clipped == true anyway, and (2) this
// behavior is more consistent with existing behavior of WebKit transforms if the user
// really does not ignore the return value.
return h.cartesianPoint2d();
}
gfx::Point3F MathUtil::mapPoint(const gfx::Transform& transform, const gfx::Point3F& p, bool& clipped)
{
HomogeneousCoordinate h = mapHomogeneousPoint(transform, p);
if (h.w > 0) {
clipped = false;
return h.cartesianPoint3d();
}
// The cartesian coordinates will be invalid after dividing by w.
clipped = true;
// Avoid dividing by w if w == 0.
if (!h.w)
return gfx::Point3F();
// This return value will be invalid because clipped == true, but (1) users of this
// code should be ignoring the return value when clipped == true anyway, and (2) this
// behavior is more consistent with existing behavior of WebKit transforms if the user
// really does not ignore the return value.
return h.cartesianPoint3d();
}
gfx::QuadF MathUtil::projectQuad(const gfx::Transform& transform, const gfx::QuadF& q, bool& clipped)
{
gfx::QuadF projectedQuad;
bool clippedPoint;
projectedQuad.set_p1(projectPoint(transform, q.p1(), clippedPoint));
clipped = clippedPoint;
projectedQuad.set_p2(projectPoint(transform, q.p2(), clippedPoint));
clipped |= clippedPoint;
projectedQuad.set_p3(projectPoint(transform, q.p3(), clippedPoint));
clipped |= clippedPoint;
projectedQuad.set_p4(projectPoint(transform, q.p4(), clippedPoint));
clipped |= clippedPoint;
return projectedQuad;
}
gfx::PointF MathUtil::projectPoint(const gfx::Transform& transform, const gfx::PointF& p, bool& clipped)
{
HomogeneousCoordinate h = projectHomogeneousPoint(transform, p);
if (h.w > 0) {
// The cartesian coordinates will be valid in this case.
clipped = false;
return h.cartesianPoint2d();
}
// The cartesian coordinates will be invalid after dividing by w.
clipped = true;
// Avoid dividing by w if w == 0.
if (!h.w)
return gfx::PointF();
// This return value will be invalid because clipped == true, but (1) users of this
// code should be ignoring the return value when clipped == true anyway, and (2) this
// behavior is more consistent with existing behavior of WebKit transforms if the user
// really does not ignore the return value.
return h.cartesianPoint2d();
}
void MathUtil::flattenTransformTo2d(gfx::Transform& transform)
{
// Set both the 3rd row and 3rd column to (0, 0, 1, 0).
//
// One useful interpretation of doing this operation:
// - For x and y values, the new transform behaves effectively like an orthographic
// projection was added to the matrix sequence.
// - For z values, the new transform overrides any effect that the transform had on
// z, and instead it preserves the z value for any points that are transformed.
// - Because of linearity of transforms, this flattened transform also preserves the
// effect that any subsequent (post-multiplied) transforms would have on z values.
//
transform.matrix().setDouble(2, 0, 0);
transform.matrix().setDouble(2, 1, 0);
transform.matrix().setDouble(0, 2, 0);
transform.matrix().setDouble(1, 2, 0);
transform.matrix().setDouble(2, 2, 1);
transform.matrix().setDouble(3, 2, 0);
transform.matrix().setDouble(2, 3, 0);
}
static inline float scaleOnAxis(double a, double b, double c)
{
return std::sqrt(a * a + b * b + c * c);
}
gfx::Vector2dF MathUtil::computeTransform2dScaleComponents(const gfx::Transform& transform)
{
if (transform.HasPerspective())
return gfx::Vector2dF(1, 1);
float xScale = scaleOnAxis(transform.matrix().getDouble(0, 0), transform.matrix().getDouble(1, 0), transform.matrix().getDouble(2, 0));
float yScale = scaleOnAxis(transform.matrix().getDouble(0, 1), transform.matrix().getDouble(1, 1), transform.matrix().getDouble(2, 1));
return gfx::Vector2dF(xScale, yScale);
}
float MathUtil::smallestAngleBetweenVectors(gfx::Vector2dF v1, gfx::Vector2dF v2)
{
double dotProduct = gfx::DotProduct(v1, v2) / v1.Length() / v2.Length();
// Clamp to compensate for rounding errors.
dotProduct = std::max(-1.0, std::min(1.0, dotProduct));
return static_cast<float>(Rad2Deg(std::acos(dotProduct)));
}
gfx::Vector2dF MathUtil::projectVector(gfx::Vector2dF source, gfx::Vector2dF destination)
{
float projectedLength = gfx::DotProduct(source, destination) / destination.LengthSquared();
return gfx::Vector2dF(projectedLength * destination.x(), projectedLength * destination.y());
}
void MathUtil::rotateEulerAngles(gfx::Transform* transform, double eulerX, double eulerY, double eulerZ)
{
// TODO (shawnsingh): make this implementation faster and more accurate by
// hard-coding each matrix instead of calling RotateAbout().
gfx::Transform rotationAboutX;
gfx::Transform rotationAboutY;
gfx::Transform rotationAboutZ;
rotationAboutX.RotateAboutXAxis(eulerX);
rotationAboutY.RotateAboutYAxis(eulerY);
rotationAboutZ.RotateAboutZAxis(eulerZ);
gfx::Transform composite = rotationAboutZ * rotationAboutY * rotationAboutX;
transform->PreconcatTransform(composite);
}
gfx::Transform MathUtil::inverse(const gfx::Transform& transform)
{
gfx::Transform result;
bool invertedSuccessfully = transform.GetInverse(&result);
if (invertedSuccessfully)
return result;
// If transform was un-invertible, then just return identity.
return gfx::Transform();
}
gfx::Transform MathUtil::to2dTransform(const gfx::Transform& transform)
{
gfx::Transform result = transform;
SkMatrix44& matrix = result.matrix();
matrix.setDouble(0, 2, 0);
matrix.setDouble(1, 2, 0);
matrix.setDouble(2, 2, 1);
matrix.setDouble(3, 2, 0);
matrix.setDouble(2, 0, 0);
matrix.setDouble(2, 1, 0);
matrix.setDouble(2, 3, 0);
return result;
}
gfx::Transform MathUtil::createGfxTransform(double m11, double m12, double m13, double m14,
double m21, double m22, double m23, double m24,
double m31, double m32, double m33, double m34,
double m41, double m42, double m43, double m44)
{
gfx::Transform result;
SkMatrix44& matrix = result.matrix();
// Initialize column 1
matrix.setDouble(0, 0, m11);
matrix.setDouble(1, 0, m12);
matrix.setDouble(2, 0, m13);
matrix.setDouble(3, 0, m14);
// Initialize column 2
matrix.setDouble(0, 1, m21);
matrix.setDouble(1, 1, m22);
matrix.setDouble(2, 1, m23);
matrix.setDouble(3, 1, m24);
// Initialize column 3
matrix.setDouble(0, 2, m31);
matrix.setDouble(1, 2, m32);
matrix.setDouble(2, 2, m33);
matrix.setDouble(3, 2, m34);
// Initialize column 4
matrix.setDouble(0, 3, m41);
matrix.setDouble(1, 3, m42);
matrix.setDouble(2, 3, m43);
matrix.setDouble(3, 3, m44);
return result;
}
gfx::Transform MathUtil::createGfxTransform(double a, double b, double c,
double d, double e, double f)
{
gfx::Transform result;
SkMatrix44& matrix = result.matrix();
matrix.setDouble(0, 0, a);
matrix.setDouble(1, 0, b);
matrix.setDouble(0, 1, c);
matrix.setDouble(1, 1, d);
matrix.setDouble(0, 3, e);
matrix.setDouble(1, 3, f);
return result;
}
} // namespace cc
|