1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
|
// Copyright 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/overdraw_metrics.h"
#include "base/debug/trace_event.h"
#include "base/metrics/histogram.h"
#include "cc/layer_tree_host.h"
#include "cc/layer_tree_host_impl.h"
#include "cc/math_util.h"
#include "ui/gfx/quad_f.h"
#include "ui/gfx/rect.h"
#include "ui/gfx/transform.h"
namespace cc {
OverdrawMetrics::OverdrawMetrics(bool recordMetricsForFrame)
: m_recordMetricsForFrame(recordMetricsForFrame)
, m_pixelsPainted(0)
, m_pixelsUploadedOpaque(0)
, m_pixelsUploadedTranslucent(0)
, m_tilesCulledForUpload(0)
, m_contentsTextureUseBytes(0)
, m_renderSurfaceTextureUseBytes(0)
, m_pixelsDrawnOpaque(0)
, m_pixelsDrawnTranslucent(0)
, m_pixelsCulledForDrawing(0)
{
}
static inline float wedgeProduct(const gfx::PointF& p1, const gfx::PointF& p2)
{
return p1.x() * p2.y() - p1.y() * p2.x();
}
// Calculates area of an arbitrary convex polygon with up to 8 points.
static inline float polygonArea(const gfx::PointF points[8], int numPoints)
{
if (numPoints < 3)
return 0;
float area = 0;
for (int i = 0; i < numPoints; ++i)
area += wedgeProduct(points[i], points[(i+1)%numPoints]);
return fabs(0.5f * area);
}
// Takes a given quad, maps it by the given transformation, and gives the area of the resulting polygon.
static inline float areaOfMappedQuad(const gfx::Transform& transform, const gfx::QuadF& quad)
{
gfx::PointF clippedQuad[8];
int numVerticesInClippedQuad = 0;
MathUtil::mapClippedQuad(transform, quad, clippedQuad, numVerticesInClippedQuad);
return polygonArea(clippedQuad, numVerticesInClippedQuad);
}
void OverdrawMetrics::didPaint(const gfx::Rect& paintedRect)
{
if (!m_recordMetricsForFrame)
return;
m_pixelsPainted += static_cast<float>(paintedRect.width()) * paintedRect.height();
}
void OverdrawMetrics::didCullTilesForUpload(int count)
{
if (m_recordMetricsForFrame)
m_tilesCulledForUpload += count;
}
void OverdrawMetrics::didUpload(const gfx::Transform& transformToTarget, const gfx::Rect& uploadRect, const gfx::Rect& opaqueRect)
{
if (!m_recordMetricsForFrame)
return;
float uploadArea = areaOfMappedQuad(transformToTarget, gfx::QuadF(uploadRect));
float uploadOpaqueArea = areaOfMappedQuad(transformToTarget, gfx::QuadF(gfx::IntersectRects(opaqueRect, uploadRect)));
m_pixelsUploadedOpaque += uploadOpaqueArea;
m_pixelsUploadedTranslucent += uploadArea - uploadOpaqueArea;
}
void OverdrawMetrics::didUseContentsTextureMemoryBytes(size_t contentsTextureUseBytes)
{
if (!m_recordMetricsForFrame)
return;
m_contentsTextureUseBytes += contentsTextureUseBytes;
}
void OverdrawMetrics::didUseRenderSurfaceTextureMemoryBytes(size_t renderSurfaceUseBytes)
{
if (!m_recordMetricsForFrame)
return;
m_renderSurfaceTextureUseBytes += renderSurfaceUseBytes;
}
void OverdrawMetrics::didCullForDrawing(const gfx::Transform& transformToTarget, const gfx::Rect& beforeCullRect, const gfx::Rect& afterCullRect)
{
if (!m_recordMetricsForFrame)
return;
float beforeCullArea = areaOfMappedQuad(transformToTarget, gfx::QuadF(beforeCullRect));
float afterCullArea = areaOfMappedQuad(transformToTarget, gfx::QuadF(afterCullRect));
m_pixelsCulledForDrawing += beforeCullArea - afterCullArea;
}
void OverdrawMetrics::didDraw(const gfx::Transform& transformToTarget, const gfx::Rect& afterCullRect, const gfx::Rect& opaqueRect)
{
if (!m_recordMetricsForFrame)
return;
float afterCullArea = areaOfMappedQuad(transformToTarget, gfx::QuadF(afterCullRect));
float afterCullOpaqueArea = areaOfMappedQuad(transformToTarget, gfx::QuadF(gfx::IntersectRects(opaqueRect, afterCullRect)));
m_pixelsDrawnOpaque += afterCullOpaqueArea;
m_pixelsDrawnTranslucent += afterCullArea - afterCullOpaqueArea;
}
void OverdrawMetrics::recordMetrics(const LayerTreeHost* layerTreeHost) const
{
if (m_recordMetricsForFrame)
recordMetricsInternal<LayerTreeHost>(UpdateAndCommit, layerTreeHost);
}
void OverdrawMetrics::recordMetrics(const LayerTreeHostImpl* layerTreeHost) const
{
if (m_recordMetricsForFrame)
recordMetricsInternal<LayerTreeHostImpl>(DrawingToScreen, layerTreeHost);
}
template<typename LayerTreeHostType>
void OverdrawMetrics::recordMetricsInternal(MetricsType metricsType, const LayerTreeHostType* layerTreeHost) const
{
// This gives approximately 10x the percentage of pixels to fill the viewport once.
float normalization = 1000.f / (layerTreeHost->deviceViewportSize().width() * layerTreeHost->deviceViewportSize().height());
// This gives approximately 100x the percentage of tiles to fill the viewport once, if all tiles were 256x256.
float tileNormalization = 10000.f / (layerTreeHost->deviceViewportSize().width() / 256.f * layerTreeHost->deviceViewportSize().height() / 256.f);
// This gives approximately 10x the percentage of bytes to fill the viewport once, assuming 4 bytes per pixel.
float byteNormalization = normalization / 4;
switch (metricsType) {
case DrawingToScreen: {
HISTOGRAM_CUSTOM_COUNTS("Renderer4.pixelCountOpaque_Draw", static_cast<int>(normalization * m_pixelsDrawnOpaque), 100, 1000000, 50);
HISTOGRAM_CUSTOM_COUNTS("Renderer4.pixelCountTranslucent_Draw", static_cast<int>(normalization * m_pixelsDrawnTranslucent), 100, 1000000, 50);
HISTOGRAM_CUSTOM_COUNTS("Renderer4.pixelCountCulled_Draw", static_cast<int>(normalization * m_pixelsCulledForDrawing), 100, 1000000, 50);
TRACE_COUNTER_ID1("cc", "DrawPixelsCulled", layerTreeHost, m_pixelsCulledForDrawing);
TRACE_EVENT2("cc", "OverdrawMetrics", "PixelsDrawnOpaque", m_pixelsDrawnOpaque, "PixelsDrawnTranslucent", m_pixelsDrawnTranslucent);
break;
}
case UpdateAndCommit: {
HISTOGRAM_CUSTOM_COUNTS("Renderer4.pixelCountPainted", static_cast<int>(normalization * m_pixelsPainted), 100, 1000000, 50);
HISTOGRAM_CUSTOM_COUNTS("Renderer4.pixelCountOpaque_Upload", static_cast<int>(normalization * m_pixelsUploadedOpaque), 100, 1000000, 50);
HISTOGRAM_CUSTOM_COUNTS("Renderer4.pixelCountTranslucent_Upload", static_cast<int>(normalization * m_pixelsUploadedTranslucent), 100, 1000000, 50);
HISTOGRAM_CUSTOM_COUNTS("Renderer4.tileCountCulled_Upload", static_cast<int>(tileNormalization * m_tilesCulledForUpload), 100, 10000000, 50);
HISTOGRAM_CUSTOM_COUNTS("Renderer4.renderSurfaceTextureBytes_ViewportScaled", static_cast<int>(byteNormalization * m_renderSurfaceTextureUseBytes), 10, 1000000, 50);
HISTOGRAM_CUSTOM_COUNTS("Renderer4.renderSurfaceTextureBytes_Unscaled", static_cast<int>(m_renderSurfaceTextureUseBytes / 1000), 1000, 100000000, 50);
HISTOGRAM_CUSTOM_COUNTS("Renderer4.contentsTextureBytes_ViewportScaled", static_cast<int>(byteNormalization * m_contentsTextureUseBytes), 10, 1000000, 50);
HISTOGRAM_CUSTOM_COUNTS("Renderer4.contentsTextureBytes_Unscaled", static_cast<int>(m_contentsTextureUseBytes / 1000), 1000, 100000000, 50);
{
TRACE_COUNTER_ID1("cc", "UploadTilesCulled", layerTreeHost, m_tilesCulledForUpload);
TRACE_EVENT2("cc", "OverdrawMetrics", "PixelsUploadedOpaque", m_pixelsUploadedOpaque, "PixelsUploadedTranslucent", m_pixelsUploadedTranslucent);
}
{
// This must be in a different scope than the TRACE_EVENT2 above.
TRACE_EVENT1("cc", "OverdrawPaintMetrics", "PixelsPainted", m_pixelsPainted);
}
{
// This must be in a different scope than the TRACE_EVENTs above.
TRACE_EVENT2("cc", "OverdrawPaintMetrics", "ContentsTextureBytes", m_contentsTextureUseBytes, "RenderSurfaceTextureBytes", m_renderSurfaceTextureUseBytes);
}
break;
}
}
}
} // namespace cc
|