1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
|
// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/test/pixel_comparator.h"
#include <algorithm>
#include "base/logging.h"
namespace cc {
ExactPixelComparator::ExactPixelComparator(const bool discard_alpha)
: discard_alpha_(discard_alpha) {
}
bool ExactPixelComparator::Compare(const SkBitmap& actual_bmp,
const SkBitmap& expected_bmp) const {
// Number of pixels with an error
int error_pixels_count = 0;
// Check that bitmaps have identical dimensions.
DCHECK(actual_bmp.width() == expected_bmp.width() &&
actual_bmp.height() == expected_bmp.height());
SkAutoLockPixels lock_actual_bmp(actual_bmp);
SkAutoLockPixels lock_expected_bmp(expected_bmp);
for (int x = 0; x < actual_bmp.width(); ++x) {
for (int y = 0; y < actual_bmp.height(); ++y) {
SkColor actual_color = actual_bmp.getColor(x, y);
SkColor expected_color = expected_bmp.getColor(x, y);
if (discard_alpha_) {
SkColorSetA(actual_color, 0);
SkColorSetA(expected_color, 0);
}
if (actual_color != expected_color) {
++error_pixels_count;
LOG(ERROR) << "Pixel error at x=" << x << " y=" << y << "; "
<< "actual RGBA=("
<< SkColorGetR(actual_color) << ","
<< SkColorGetG(actual_color) << ","
<< SkColorGetB(actual_color) << ","
<< SkColorGetA(actual_color) << "); "
<< "expected RGBA=("
<< SkColorGetR(expected_color) << ","
<< SkColorGetG(expected_color) << ","
<< SkColorGetB(expected_color) << ","
<< SkColorGetA(expected_color) << ")";
}
}
}
if (error_pixels_count != 0) {
LOG(ERROR) << "Number of pixel with an error: " << error_pixels_count;
return false;
}
return true;
}
FuzzyPixelComparator::FuzzyPixelComparator(
const bool discard_alpha,
const float error_pixels_percentage_limit,
const float small_error_pixels_percentage_limit,
const float avg_abs_error_limit,
const int max_abs_error_limit,
const int small_error_threshold)
: discard_alpha_(discard_alpha),
error_pixels_percentage_limit_(error_pixels_percentage_limit),
small_error_pixels_percentage_limit_(small_error_pixels_percentage_limit),
avg_abs_error_limit_(avg_abs_error_limit),
max_abs_error_limit_(max_abs_error_limit),
small_error_threshold_(small_error_threshold) {
}
bool FuzzyPixelComparator::Compare(const SkBitmap& actual_bmp,
const SkBitmap& expected_bmp) const {
// Number of pixels with an error
int error_pixels_count = 0;
// Number of pixels with a small error
int small_error_pixels_count = 0;
// The per channel sums of absolute errors over all pixels.
int64 sum_abs_error_r = 0;
int64 sum_abs_error_g = 0;
int64 sum_abs_error_b = 0;
int64 sum_abs_error_a = 0;
// The per channel maximum absolute errors over all pixels.
int max_abs_error_r = 0;
int max_abs_error_g = 0;
int max_abs_error_b = 0;
int max_abs_error_a = 0;
// Check that bitmaps have identical dimensions.
DCHECK(actual_bmp.width() == expected_bmp.width() &&
actual_bmp.height() == expected_bmp.height());
// Check that bitmaps are not empty.
DCHECK(actual_bmp.width() > 0 && actual_bmp.height() > 0);
SkAutoLockPixels lock_actual_bmp(actual_bmp);
SkAutoLockPixels lock_expected_bmp(expected_bmp);
for (int x = 0; x < actual_bmp.width(); ++x) {
for (int y = 0; y < actual_bmp.height(); ++y) {
SkColor actual_color = actual_bmp.getColor(x, y);
SkColor expected_color = expected_bmp.getColor(x, y);
if (discard_alpha_) {
SkColorSetA(actual_color, 0);
SkColorSetA(expected_color, 0);
}
if (actual_color != expected_color) {
++error_pixels_count;
// Compute per channel errors
int error_r = SkColorGetR(actual_color) - SkColorGetR(expected_color);
int error_g = SkColorGetG(actual_color) - SkColorGetG(expected_color);
int error_b = SkColorGetB(actual_color) - SkColorGetB(expected_color);
int error_a = SkColorGetA(actual_color) - SkColorGetA(expected_color);
int abs_error_r = std::abs(error_r);
int abs_error_g = std::abs(error_g);
int abs_error_b = std::abs(error_b);
int abs_error_a = std::abs(error_a);
// Increment small error counter if error is below threshold
if (abs_error_r <= small_error_threshold_ &&
abs_error_g <= small_error_threshold_ &&
abs_error_b <= small_error_threshold_ &&
abs_error_a <= small_error_threshold_)
++small_error_pixels_count;
// Update per channel maximum absolute errors
max_abs_error_r = std::max(max_abs_error_r, abs_error_r);
max_abs_error_g = std::max(max_abs_error_g, abs_error_g);
max_abs_error_b = std::max(max_abs_error_b, abs_error_b);
max_abs_error_a = std::max(max_abs_error_a, abs_error_a);
// Update per channel absolute error sums
sum_abs_error_r += abs_error_r;
sum_abs_error_g += abs_error_g;
sum_abs_error_b += abs_error_b;
sum_abs_error_a += abs_error_a;
}
}
}
// Compute error metrics from collected data
int pixels_count = actual_bmp.width() * actual_bmp.height();
float error_pixels_percentage = 0.0f;
float small_error_pixels_percentage = 0.0f;
if (pixels_count > 0) {
error_pixels_percentage = static_cast<float>(error_pixels_count) /
pixels_count * 100.0f;
small_error_pixels_percentage =
static_cast<float>(small_error_pixels_count) / pixels_count * 100.0f;
}
float avg_abs_error_r = 0.0f;
float avg_abs_error_g = 0.0f;
float avg_abs_error_b = 0.0f;
float avg_abs_error_a = 0.0f;
if (error_pixels_count > 0) {
avg_abs_error_r = static_cast<float>(sum_abs_error_r) / error_pixels_count;
avg_abs_error_g = static_cast<float>(sum_abs_error_g) / error_pixels_count;
avg_abs_error_b = static_cast<float>(sum_abs_error_b) / error_pixels_count;
avg_abs_error_a = static_cast<float>(sum_abs_error_a) / error_pixels_count;
}
if (error_pixels_percentage > error_pixels_percentage_limit_ ||
small_error_pixels_percentage > small_error_pixels_percentage_limit_ ||
avg_abs_error_r > avg_abs_error_limit_ ||
avg_abs_error_g > avg_abs_error_limit_ ||
avg_abs_error_b > avg_abs_error_limit_ ||
avg_abs_error_a > avg_abs_error_limit_ ||
max_abs_error_r > max_abs_error_limit_ ||
max_abs_error_g > max_abs_error_limit_ ||
max_abs_error_b > max_abs_error_limit_ ||
max_abs_error_a > max_abs_error_limit_) {
LOG(ERROR) << "Percentage of pixels with an error: "
<< error_pixels_percentage;
LOG(ERROR) << "Percentage of pixels with errors not greater than "
<< small_error_threshold_ << ": "
<< small_error_pixels_percentage;
LOG(ERROR) << "Average absolute error (excluding identical pixels): "
<< "R=" << avg_abs_error_r << " "
<< "G=" << avg_abs_error_g << " "
<< "B=" << avg_abs_error_b << " "
<< "A=" << avg_abs_error_a;
LOG(ERROR) << "Largest absolute error: "
<< "R=" << max_abs_error_r << " "
<< "G=" << max_abs_error_g << " "
<< "B=" << max_abs_error_b << " "
<< "A=" << max_abs_error_a;
for (int x = 0; x < actual_bmp.width(); ++x) {
for (int y = 0; y < actual_bmp.height(); ++y) {
SkColor actual_color = actual_bmp.getColor(x, y);
SkColor expected_color = expected_bmp.getColor(x, y);
if (discard_alpha_) {
SkColorSetA(actual_color, 0);
SkColorSetA(expected_color, 0);
}
if (actual_color != expected_color) {
LOG(ERROR) << "Pixel error at x=" << x << " y=" << y << "; "
<< "actual RGBA=("
<< SkColorGetR(actual_color) << ","
<< SkColorGetG(actual_color) << ","
<< SkColorGetB(actual_color) << ","
<< SkColorGetA(actual_color) << "); "
<< "expected RGBA=("
<< SkColorGetR(expected_color) << ","
<< SkColorGetG(expected_color) << ","
<< SkColorGetB(expected_color) << ","
<< SkColorGetA(expected_color) << ")";
}
}
}
return false;
} else {
return true;
}
}
} // namespace cc
|