1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
|
// Copyright 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/tile_priority.h"
#include "base/values.h"
namespace {
// TODO(qinmin): modify ui/range/Range.h to support template so that we
// don't need to define this.
struct Range {
Range(float start, float end) : start_(start), end_(end) {}
bool IsEmpty();
float start_;
float end_;
};
inline bool Intersects(const Range& a, const Range& b) {
return a.start_ < b.end_ && b.start_ < a.end_;
}
inline Range Intersect(const Range& a, const Range& b) {
return Range(std::max(a.start_, b.start_), std::min(a.end_, b.end_));
}
bool Range::IsEmpty() {
return start_ >= end_;
}
inline void IntersectNegativeHalfplane(Range& out, float previous,
float current, float target, float time_delta) {
float time_per_dist = time_delta / (current - previous);
float t = (target - current) * time_per_dist;
if (time_per_dist > 0.0f)
out.start_ = std::max(out.start_, t);
else
out.end_ = std::min(out.end_, t);
}
inline void IntersectPositiveHalfplane(Range& out, float previous,
float current, float target, float time_delta) {
float time_per_dist = time_delta / (current - previous);
float t = (target - current) * time_per_dist;
if (time_per_dist < 0.0f)
out.start_ = std::max(out.start_, t);
else
out.end_ = std::min(out.end_, t);
}
} // namespace
namespace cc {
const float TilePriority::kMaxDistanceInContentSpace = 4096.0f;
scoped_ptr<base::Value> WhichTreeAsValue(WhichTree tree) {
switch (tree) {
case ACTIVE_TREE:
return scoped_ptr<base::Value>(base::Value::CreateStringValue(
"ACTIVE_TREE"));
case PENDING_TREE:
return scoped_ptr<base::Value>(base::Value::CreateStringValue(
"PENDING_TREE"));
default:
DCHECK(false) << "Unrecognized WhichTree value";
return scoped_ptr<base::Value>(base::Value::CreateStringValue(
"<unknown WhichTree value>"));
}
}
float TilePriority::TimeForBoundsToIntersect(const gfx::RectF& previous_bounds,
const gfx::RectF& current_bounds,
float time_delta,
const gfx::RectF& target_bounds) {
// Perform an intersection test explicitly between current and target.
if (current_bounds.x() < target_bounds.right() &&
current_bounds.y() < target_bounds.bottom() &&
target_bounds.x() < current_bounds.right() &&
target_bounds.y() < current_bounds.bottom())
return 0.0f;
const float kMaxTimeToVisibleInSeconds =
std::numeric_limits<float>::infinity();
if (time_delta == 0.0f)
return kMaxTimeToVisibleInSeconds;
// As we are trying to solve the case of both scaling and scrolling, using
// a single coordinate with velocity is not enough. The logic here is to
// calculate the velocity for each edge. Then we calculate the time range that
// each edge will stay on the same side of the target bounds. If there is an
// overlap between these time ranges, the bounds must have intersect with
// each other during that period of time.
Range range(0.0f, kMaxTimeToVisibleInSeconds);
IntersectPositiveHalfplane(
range, previous_bounds.x(), current_bounds.x(),
target_bounds.right(), time_delta);
IntersectNegativeHalfplane(
range, previous_bounds.right(), current_bounds.right(),
target_bounds.x(), time_delta);
IntersectPositiveHalfplane(
range, previous_bounds.y(), current_bounds.y(),
target_bounds.bottom(), time_delta);
IntersectNegativeHalfplane(
range, previous_bounds.bottom(), current_bounds.bottom(),
target_bounds.y(), time_delta);
return range.IsEmpty() ? kMaxTimeToVisibleInSeconds : range.start_;
}
scoped_ptr<base::Value> TileMemoryLimitPolicyAsValue(
TileMemoryLimitPolicy policy) {
switch (policy) {
case ALLOW_NOTHING:
return scoped_ptr<base::Value>(base::Value::CreateStringValue(
"ALLOW_NOTHING"));
case ALLOW_ABSOLUTE_MINIMUM:
return scoped_ptr<base::Value>(base::Value::CreateStringValue(
"ALLOW_ABSOLUTE_MINIMUM"));
case ALLOW_PREPAINT_ONLY:
return scoped_ptr<base::Value>(base::Value::CreateStringValue(
"ALLOW_PREPAINT_ONLY"));
case ALLOW_ANYTHING:
return scoped_ptr<base::Value>(base::Value::CreateStringValue(
"ALLOW_ANYTHING"));
default:
DCHECK(false) << "Unrecognized policy value";
return scoped_ptr<base::Value>(base::Value::CreateStringValue(
"<unknown>"));
}
}
scoped_ptr<base::Value> TreePriorityAsValue(TreePriority prio) {
switch (prio) {
case SAME_PRIORITY_FOR_BOTH_TREES:
return scoped_ptr<base::Value>(base::Value::CreateStringValue(
"SAME_PRIORITY_FOR_BOTH_TREES"));
case SMOOTHNESS_TAKES_PRIORITY:
return scoped_ptr<base::Value>(base::Value::CreateStringValue(
"SMOOTHNESS_TAKES_PRIORITY"));
case NEW_CONTENT_TAKES_PRIORITY:
return scoped_ptr<base::Value>(base::Value::CreateStringValue(
"NEW_CONTENT_TAKES_PRIORITY"));
default:
DCHECK(false) << "Unrecognized priority value";
return scoped_ptr<base::Value>(base::Value::CreateStringValue(
"<unknown>"));
}
}
scoped_ptr<base::Value> GlobalStateThatImpactsTilePriority::AsValue() const {
scoped_ptr<base::DictionaryValue> state(new base::DictionaryValue());
state->Set("memory_limit_policy", TileMemoryLimitPolicyAsValue(memory_limit_policy).release());
state->SetInteger("memory_limit_in_bytes", memory_limit_in_bytes);
state->Set("tree_priority", TreePriorityAsValue(tree_priority).release());
return state.PassAs<base::Value>();
}
} // namespace cc
|