1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
|
// Copyright 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/timing_function.h"
#include "third_party/skia/include/core/SkMath.h"
// TODO(danakj) These methods come from SkInterpolator.cpp. When such a method
// is available in the public Skia API, we should switch to using that.
// http://crbug.com/159735
namespace {
// Dot14 has 14 bits for decimal places, and the remainder for whole numbers.
typedef int Dot14;
#define DOT14_ONE (1 << 14)
#define DOT14_HALF (1 << 13)
#define Dot14ToFloat(x) ((x) / 16384.f)
static inline Dot14 Dot14Mul(Dot14 a, Dot14 b) {
return (a * b + DOT14_HALF) >> 14;
}
static inline Dot14 EvalCubic(Dot14 t, Dot14 A, Dot14 B, Dot14 C) {
return Dot14Mul(Dot14Mul(Dot14Mul(C, t) + B, t) + A, t);
}
static inline Dot14 PinAndConvert(SkScalar x) {
if (x <= 0)
return 0;
if (x >= SK_Scalar1)
return DOT14_ONE;
return SkScalarToFixed(x) >> 2;
}
SkScalar SkUnitCubicInterp(SkScalar bx, SkScalar by,
SkScalar cx, SkScalar cy,
SkScalar value) {
Dot14 x = PinAndConvert(value);
if (x == 0) return 0;
if (x == DOT14_ONE) return SK_Scalar1;
Dot14 b = PinAndConvert(bx);
Dot14 c = PinAndConvert(cx);
// Now compute our coefficients from the control points.
// t -> 3b
// t^2 -> 3c - 6b
// t^3 -> 3b - 3c + 1
Dot14 A = 3 * b;
Dot14 B = 3 * (c - 2 * b);
Dot14 C = 3 * (b - c) + DOT14_ONE;
// Now search for a t value given x.
Dot14 t = DOT14_HALF;
Dot14 dt = DOT14_HALF;
for (int i = 0; i < 13; i++) {
dt >>= 1;
Dot14 guess = EvalCubic(t, A, B, C);
if (x < guess)
t -= dt;
else
t += dt;
}
// Now we have t, so compute the coefficient for Y and evaluate.
b = PinAndConvert(by);
c = PinAndConvert(cy);
A = 3 * b;
B = 3 * (c - 2 * b);
C = 3 * (b - c) + DOT14_ONE;
return SkFixedToScalar(EvalCubic(t, A, B, C) << 2);
}
} // namespace
namespace cc {
TimingFunction::TimingFunction() {
}
TimingFunction::~TimingFunction() {
}
double TimingFunction::duration() const {
return 1.0;
}
scoped_ptr<CubicBezierTimingFunction> CubicBezierTimingFunction::create(
double x1, double y1, double x2, double y2) {
return make_scoped_ptr(new CubicBezierTimingFunction(x1, y1, x2, y2));
}
CubicBezierTimingFunction::CubicBezierTimingFunction(double x1, double y1,
double x2, double y2)
: x1_(SkDoubleToScalar(x1)),
y1_(SkDoubleToScalar(y1)),
x2_(SkDoubleToScalar(x2)),
y2_(SkDoubleToScalar(y2)) {
}
CubicBezierTimingFunction::~CubicBezierTimingFunction() {
}
float CubicBezierTimingFunction::getValue(double x) const {
SkScalar value = SkUnitCubicInterp(x1_, y1_, x2_, y2_, x);
return SkScalarToFloat(value);
}
scoped_ptr<AnimationCurve> CubicBezierTimingFunction::clone() const {
return make_scoped_ptr(
new CubicBezierTimingFunction(*this)).PassAs<AnimationCurve>();
}
// These numbers come from http://www.w3.org/TR/css3-transitions/#transition-timing-function_tag.
scoped_ptr<TimingFunction> EaseTimingFunction::create() {
return CubicBezierTimingFunction::create(
0.25, 0.1, 0.25, 1).PassAs<TimingFunction>();
}
scoped_ptr<TimingFunction> EaseInTimingFunction::create() {
return CubicBezierTimingFunction::create(
0.42, 0, 1.0, 1).PassAs<TimingFunction>();
}
scoped_ptr<TimingFunction> EaseOutTimingFunction::create() {
return CubicBezierTimingFunction::create(
0, 0, 0.58, 1).PassAs<TimingFunction>();
}
scoped_ptr<TimingFunction> EaseInOutTimingFunction::create() {
return CubicBezierTimingFunction::create(
0.42, 0, 0.58, 1).PassAs<TimingFunction>();
}
} // namespace cc
|