summaryrefslogtreecommitdiffstats
path: root/cc/trees/draw_property_utils.cc
blob: d92b7e5fefe0511695e6d561269866d047438215 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "cc/trees/draw_property_utils.h"

#include <vector>

#include "cc/base/math_util.h"
#include "cc/layers/layer.h"
#include "cc/layers/layer_impl.h"
#include "cc/trees/layer_tree_impl.h"
#include "cc/trees/property_tree.h"
#include "cc/trees/property_tree_builder.h"
#include "ui/gfx/geometry/rect_conversions.h"

namespace cc {

namespace {

template <typename LayerType>
void CalculateVisibleRects(const std::vector<LayerType*>& visible_layer_list,
                           const ClipTree& clip_tree,
                           const TransformTree& transform_tree) {
  for (auto& layer : visible_layer_list) {
    // TODO(ajuma): Compute content_scale rather than using it. Note that for
    // PictureLayer and PictureImageLayers, content_bounds == bounds and
    // content_scale_x == content_scale_y == 1.0, so once impl painting is on
    // everywhere, this code will be unnecessary.
    gfx::Size layer_bounds = layer->bounds();
    const bool has_clip = layer->clip_tree_index() > 0;
    const TransformNode* transform_node =
        transform_tree.Node(layer->transform_tree_index());
    if (has_clip) {
      const ClipNode* clip_node = clip_tree.Node(layer->clip_tree_index());
      const TransformNode* clip_transform_node =
          transform_tree.Node(clip_node->data.transform_id);
      const bool target_is_root_surface =
          transform_node->data.content_target_id == 1;
      // When the target is the root surface, we need to include the root
      // transform by walking up to the root of the transform tree.
      const int target_id =
          target_is_root_surface ? 0 : transform_node->data.content_target_id;
      const TransformNode* target_node = transform_tree.Node(target_id);

      gfx::Transform content_to_target = transform_node->data.to_target;

      content_to_target.Translate(layer->offset_to_transform_parent().x(),
                                  layer->offset_to_transform_parent().y());

      gfx::Rect combined_clip_rect_in_target_space;
      gfx::Rect clip_rect_in_target_space;
      gfx::Transform clip_to_target;
      bool success = true;
      if (clip_transform_node->data.target_id == target_node->id) {
        clip_to_target = clip_transform_node->data.to_target;
      } else {
        success = transform_tree.ComputeTransformWithDestinationSublayerScale(
            clip_transform_node->id, target_node->id, &clip_to_target);
      }
      if (target_node->id > clip_node->data.transform_id) {
        if (!success) {
          DCHECK(target_node->data.to_screen_is_animated);

          // An animated singular transform may become non-singular during the
          // animation, so we still need to compute a visible rect. In this
          // situation, we treat the entire layer as visible.
          layer->set_visible_rect_from_property_trees(gfx::Rect(layer_bounds));
          layer->set_clip_rect_in_target_space_from_property_trees(
              gfx::ToEnclosingRect(clip_node->data.combined_clip));
          continue;
        }

        combined_clip_rect_in_target_space =
            gfx::ToEnclosingRect(MathUtil::ProjectClippedRect(
                clip_to_target, clip_node->data.combined_clip));
        clip_rect_in_target_space = gfx::ToEnclosingRect(
            MathUtil::ProjectClippedRect(clip_to_target, clip_node->data.clip));
      } else {
        // Computing a transform to an ancestor should always succeed.
        DCHECK(success);
        combined_clip_rect_in_target_space =
            gfx::ToEnclosingRect(MathUtil::MapClippedRect(
                clip_to_target, clip_node->data.combined_clip));
        clip_rect_in_target_space = gfx::ToEnclosingRect(
            MathUtil::MapClippedRect(clip_to_target, clip_node->data.clip));
      }

      if (clip_node->data.requires_tight_clip_rect)
        layer->set_clip_rect_in_target_space_from_property_trees(
            combined_clip_rect_in_target_space);
      else
        layer->set_clip_rect_in_target_space_from_property_trees(
            clip_rect_in_target_space);

      gfx::Rect layer_content_rect = gfx::Rect(layer_bounds);
      gfx::Rect layer_content_bounds_in_target_space =
          MathUtil::MapEnclosingClippedRect(content_to_target,
                                            layer_content_rect);
      combined_clip_rect_in_target_space.Intersect(
          layer_content_bounds_in_target_space);
      clip_rect_in_target_space.Intersect(layer_content_bounds_in_target_space);
      if (combined_clip_rect_in_target_space.IsEmpty()) {
        layer->set_visible_rect_from_property_trees(gfx::Rect());
        continue;
      }

      // If the layer is fully contained within the clip, treat it as fully
      // visible. Since clip_rect_in_target_space has already been intersected
      // with layer_content_bounds_in_target_space, the layer is fully contained
      // within the clip iff these rects are equal.
      if (combined_clip_rect_in_target_space ==
          layer_content_bounds_in_target_space) {
        layer->set_visible_rect_from_property_trees(gfx::Rect(layer_bounds));
        continue;
      }

      gfx::Transform target_to_content;
      gfx::Transform target_to_layer;

      if (transform_node->data.ancestors_are_invertible) {
        target_to_layer = transform_node->data.from_target;
        success = true;
      } else {
        success = transform_tree.ComputeTransformWithSourceSublayerScale(
            target_node->id, transform_node->id, &target_to_layer);
      }

      if (!success) {
        // An animated singular transform may become non-singular during the
        // animation, so we still need to compute a visible rect. In this
        // situation, we treat the entire layer as visible.
        layer->set_visible_rect_from_property_trees(gfx::Rect(layer_bounds));
        continue;
      }

      target_to_content.Translate(-layer->offset_to_transform_parent().x(),
                                  -layer->offset_to_transform_parent().y());
      target_to_content.PreconcatTransform(target_to_layer);

      gfx::Rect visible_rect = MathUtil::ProjectEnclosingClippedRect(
          target_to_content, combined_clip_rect_in_target_space);

      visible_rect.Intersect(gfx::Rect(layer_bounds));

      layer->set_visible_rect_from_property_trees(visible_rect);
    } else {
      layer->set_visible_rect_from_property_trees(gfx::Rect(layer_bounds));
      layer->set_clip_rect_in_target_space_from_property_trees(
          gfx::Rect(layer_bounds));
    }
  }
}

template <typename LayerType>
static bool IsRootLayerOfNewRenderingContext(LayerType* layer) {
  if (layer->parent())
    return !layer->parent()->Is3dSorted() && layer->Is3dSorted();
  return layer->Is3dSorted();
}

template <typename LayerType>
static inline bool LayerIsInExisting3DRenderingContext(LayerType* layer) {
  return layer->Is3dSorted() && layer->parent() &&
         layer->parent()->Is3dSorted() &&
         layer->parent()->sorting_context_id() == layer->sorting_context_id();
}

template <typename LayerType>
static bool TransformToScreenIsKnown(LayerType* layer,
                                     const TransformTree& tree) {
  const TransformNode* node = tree.Node(layer->transform_tree_index());
  return !node->data.to_screen_is_animated;
}

template <typename LayerType>
static bool HasSingularTransform(LayerType* layer, const TransformTree& tree) {
  const TransformNode* node = tree.Node(layer->transform_tree_index());
  return !node->data.is_invertible || !node->data.ancestors_are_invertible;
}

template <typename LayerType>
static bool IsLayerBackFaceVisible(LayerType* layer,
                                   const TransformTree& tree) {
  // The current W3C spec on CSS transforms says that backface visibility should
  // be determined differently depending on whether the layer is in a "3d
  // rendering context" or not. For Chromium code, we can determine whether we
  // are in a 3d rendering context by checking if the parent preserves 3d.

  if (LayerIsInExisting3DRenderingContext(layer))
    return DrawTransformFromPropertyTrees(layer, tree).IsBackFaceVisible();

  // In this case, either the layer establishes a new 3d rendering context, or
  // is not in a 3d rendering context at all.
  return layer->transform().IsBackFaceVisible();
}

template <typename LayerType>
static bool IsSurfaceBackFaceVisible(LayerType* layer,
                                     const TransformTree& tree) {
  if (LayerIsInExisting3DRenderingContext(layer)) {
    const TransformNode* node = tree.Node(layer->transform_tree_index());
    // Draw transform as a contributing render surface.
    // TODO(enne): we shouldn't walk the tree during a tree walk.
    gfx::Transform surface_draw_transform;
    tree.ComputeTransform(node->id, node->data.target_id,
                          &surface_draw_transform);
    return surface_draw_transform.IsBackFaceVisible();
  }

  if (IsRootLayerOfNewRenderingContext(layer))
    return layer->transform().IsBackFaceVisible();

  // If the render_surface is not part of a new or existing rendering context,
  // then the layers that contribute to this surface will decide back-face
  // visibility for themselves.
  return false;
}

template <typename LayerType>
static bool IsAnimatingTransformToScreen(LayerType* layer,
                                         const TransformTree& tree) {
  const TransformNode* node = tree.Node(layer->transform_tree_index());
  return node->data.to_screen_is_animated;
}

static inline bool TransformToScreenIsKnown(Layer* layer,
                                            const TransformTree& tree) {
  return !IsAnimatingTransformToScreen(layer, tree);
}

static inline bool TransformToScreenIsKnown(LayerImpl* layer,
                                            const TransformTree& tree) {
  return true;
}

template <typename LayerType>
static bool HasInvertibleOrAnimatedTransform(LayerType* layer) {
  return layer->transform_is_invertible() ||
         layer->HasPotentiallyRunningTransformAnimation();
}

static inline bool SubtreeShouldBeSkipped(LayerImpl* layer,
                                          bool layer_is_drawn,
                                          const TransformTree& tree) {
  // If the layer transform is not invertible, it should not be drawn.
  // TODO(ajuma): Correctly process subtrees with singular transform for the
  // case where we may animate to a non-singular transform and wish to
  // pre-raster.
  if (!HasInvertibleOrAnimatedTransform(layer))
    return true;

  // When we need to do a readback/copy of a layer's output, we can not skip
  // it or any of its ancestors.
  if (layer->draw_properties().layer_or_descendant_has_copy_request)
    return false;

  // We cannot skip the the subtree if a descendant has a wheel or touch handler
  // or the hit testing code will break (it requires fresh transforms, etc).
  if (layer->draw_properties().layer_or_descendant_has_input_handler)
    return false;

  // If the layer is not drawn, then skip it and its subtree.
  if (!layer_is_drawn)
    return true;

  if (layer->render_surface() && !layer->double_sided() &&
      IsSurfaceBackFaceVisible(layer, tree))
    return true;

  // If layer is on the pending tree and opacity is being animated then
  // this subtree can't be skipped as we need to create, prioritize and
  // include tiles for this layer when deciding if tree can be activated.
  if (layer->layer_tree_impl()->IsPendingTree() &&
      layer->HasPotentiallyRunningOpacityAnimation())
    return false;

  // The opacity of a layer always applies to its children (either implicitly
  // via a render surface or explicitly if the parent preserves 3D), so the
  // entire subtree can be skipped if this layer is fully transparent.
  return !layer->opacity();
}

static inline bool SubtreeShouldBeSkipped(Layer* layer,
                                          bool layer_is_drawn,
                                          const TransformTree& tree) {
  // If the layer transform is not invertible, it should not be drawn.
  if (!layer->transform_is_invertible() &&
      !layer->HasPotentiallyRunningTransformAnimation())
    return true;

  // When we need to do a readback/copy of a layer's output, we can not skip
  // it or any of its ancestors.
  if (layer->draw_properties().layer_or_descendant_has_copy_request)
    return false;

  // We cannot skip the the subtree if a descendant has a wheel or touch handler
  // or the hit testing code will break (it requires fresh transforms, etc).
  if (layer->draw_properties().layer_or_descendant_has_input_handler)
    return false;

  // If the layer is not drawn, then skip it and its subtree.
  if (!layer_is_drawn)
    return true;

  if (layer->render_surface() && !layer->double_sided() &&
      !layer->HasPotentiallyRunningTransformAnimation() &&
      IsSurfaceBackFaceVisible(layer, tree))
    return true;

  // If the opacity is being animated then the opacity on the main thread is
  // unreliable (since the impl thread may be using a different opacity), so it
  // should not be trusted.
  // In particular, it should not cause the subtree to be skipped.
  // Similarly, for layers that might animate opacity using an impl-only
  // animation, their subtree should also not be skipped.
  return !layer->opacity() && !layer->HasPotentiallyRunningOpacityAnimation() &&
         !layer->OpacityCanAnimateOnImplThread();
}

template <typename LayerType>
static bool LayerShouldBeSkipped(LayerType* layer,
                                 bool layer_is_drawn,
                                 const TransformTree& tree) {
  // Layers can be skipped if any of these conditions are met.
  //   - is not drawn due to it or one of its ancestors being hidden (or having
  //     no copy requests).
  //   - does not draw content.
  //   - is transparent.
  //   - has empty bounds
  //   - the layer is not double-sided, but its back face is visible.
  //
  // Some additional conditions need to be computed at a later point after the
  // recursion is finished.
  //   - the intersection of render_surface content and layer clip_rect is empty
  //   - the visible_layer_rect is empty
  //
  // Note, if the layer should not have been drawn due to being fully
  // transparent, we would have skipped the entire subtree and never made it
  // into this function, so it is safe to omit this check here.
  if (!layer_is_drawn)
    return true;

  if (!layer->DrawsContent() || layer->bounds().IsEmpty())
    return true;

  LayerType* backface_test_layer = layer;
  if (layer->use_parent_backface_visibility()) {
    DCHECK(layer->parent());
    DCHECK(!layer->parent()->use_parent_backface_visibility());
    backface_test_layer = layer->parent();
  }

  // The layer should not be drawn if (1) it is not double-sided and (2) the
  // back of the layer is known to be facing the screen.
  if (!backface_test_layer->double_sided() &&
      TransformToScreenIsKnown(backface_test_layer, tree) &&
      IsLayerBackFaceVisible(backface_test_layer, tree))
    return true;

  return false;
}

template <typename LayerType>
void FindLayersThatNeedUpdates(
    LayerType* layer,
    const TransformTree& tree,
    bool subtree_is_visible_from_ancestor,
    typename LayerType::LayerListType* update_layer_list,
    std::vector<LayerType*>* visible_layer_list) {
  bool layer_is_drawn =
      layer->HasCopyRequest() ||
      (subtree_is_visible_from_ancestor && !layer->hide_layer_and_subtree());

  if (layer->parent() && SubtreeShouldBeSkipped(layer, layer_is_drawn, tree))
    return;

  if (!LayerShouldBeSkipped(layer, layer_is_drawn, tree)) {
    visible_layer_list->push_back(layer);
    update_layer_list->push_back(layer);
  }

  // Append mask layers to the update layer list.  They don't have valid visible
  // rects, so need to get added after the above calculation.  Replica layers
  // don't need to be updated.
  if (LayerType* mask_layer = layer->mask_layer())
    update_layer_list->push_back(mask_layer);
  if (LayerType* replica_layer = layer->replica_layer()) {
    if (LayerType* mask_layer = replica_layer->mask_layer())
      update_layer_list->push_back(mask_layer);
  }

  for (size_t i = 0; i < layer->children().size(); ++i) {
    FindLayersThatNeedUpdates(layer->child_at(i), tree, layer_is_drawn,
                              update_layer_list, visible_layer_list);
  }
}

}  // namespace

void ComputeClips(ClipTree* clip_tree, const TransformTree& transform_tree) {
  if (!clip_tree->needs_update())
    return;
  for (int i = 0; i < static_cast<int>(clip_tree->size()); ++i) {
    ClipNode* clip_node = clip_tree->Node(i);
    const TransformNode* transform_node =
        transform_tree.Node(clip_node->data.transform_id);

    // Only descendants of a real clipping layer (i.e., not 0) may have their
    // clip adjusted due to intersecting with an ancestor clip.
    const bool is_clipped = clip_node->parent_id > 0;
    if (!is_clipped) {
      DCHECK(!clip_node->data.inherit_parent_target_space_clip);
      clip_node->data.combined_clip = clip_node->data.clip;
      if (clip_node->id > 0) {
        gfx::Transform to_target = transform_node->data.to_target;
        clip_node->data.clip_in_target_space =
            MathUtil::MapClippedRect(to_target, clip_node->data.combined_clip);
      }
      continue;
    }

    ClipNode* parent_clip_node = clip_tree->parent(clip_node);
    const TransformNode* parent_transform_node =
        transform_tree.Node(parent_clip_node->data.transform_id);

    // Clips must be combined in target space. We cannot, for example, combine
    // clips in the space of the child clip. The reason is non-affine
    // transforms. Say we have the following tree T->A->B->C, and B clips C, but
    // draw into target T. It may be the case that A applies a perspective
    // transform, and B and C are at different z positions. When projected into
    // target space, the relative sizes and positions of B and C can shift.
    // Since it's the relationship in target space that matters, that's where we
    // must combine clips.
    gfx::Transform parent_to_target;
    gfx::Transform clip_to_target;

    gfx::Transform target_to_clip;
    gfx::Transform parent_to_transform_target;
    gfx::Transform transform_target_to_target;

    const bool target_is_root_surface = clip_node->data.target_id == 1;
    // When the target is the root surface, we need to include the root
    // transform by walking up to the root of the transform tree.
    const int target_id =
        target_is_root_surface ? 0 : clip_node->data.target_id;

    bool success = true;
    // When render surface applies clip, we need the clip from the target's
    // target space. But, as the combined clip is in parent clip's target
    // space, we need to first transform it from parent's target space to
    // target's target space.
    if (clip_node->data.inherit_parent_target_space_clip) {
      success &= transform_tree.ComputeTransformWithDestinationSublayerScale(
          parent_transform_node->id, transform_node->data.target_id,
          &parent_to_transform_target);
      success &= transform_tree.ComputeTransformWithSourceSublayerScale(
          transform_node->data.target_id, target_id,
          &transform_target_to_target);
      transform_target_to_target.matrix().postScale(
          transform_node->data.sublayer_scale.x(),
          transform_node->data.sublayer_scale.y(), 1.0);
    } else if (parent_transform_node->data.content_target_id ==
               clip_node->data.target_id) {
      parent_to_target = parent_transform_node->data.to_target;
    } else {
      success &= transform_tree.ComputeTransformWithDestinationSublayerScale(
          parent_transform_node->id, target_id, &parent_to_target);
    }

    if (transform_node->data.content_target_id == clip_node->data.target_id) {
      clip_to_target = transform_node->data.to_target;
    } else {
      success &= transform_tree.ComputeTransformWithDestinationSublayerScale(
          transform_node->id, target_id, &clip_to_target);
    }

    if (transform_node->data.content_target_id == clip_node->data.target_id &&
        transform_node->data.ancestors_are_invertible) {
      target_to_clip = transform_node->data.from_target;
    } else {
      success &= clip_to_target.GetInverse(&target_to_clip);
    }

    // If we can't compute a transform, it's because we had to use the inverse
    // of a singular transform. We won't draw in this case, so there's no need
    // to compute clips.
    if (!success) {
      continue;
    }

    // In order to intersect with as small a rect as possible, we do a
    // preliminary clip in target space so that when we project back, there's
    // less likelihood of intersecting the view plane.
    gfx::RectF inherited_clip_in_target_space;
    if (clip_node->data.inherit_parent_target_space_clip) {
      gfx::RectF combined_clip_in_transform_target_space;
      if (parent_transform_node->id > transform_node->data.target_id)
        combined_clip_in_transform_target_space = MathUtil::MapClippedRect(
            parent_to_transform_target, parent_clip_node->data.combined_clip);
      else
        combined_clip_in_transform_target_space = MathUtil::ProjectClippedRect(
            parent_to_transform_target, parent_clip_node->data.combined_clip);
      inherited_clip_in_target_space = MathUtil::ProjectClippedRect(
          transform_target_to_target, combined_clip_in_transform_target_space);
    } else if (parent_transform_node->id > target_id) {
      inherited_clip_in_target_space = MathUtil::MapClippedRect(
          parent_to_target, parent_clip_node->data.combined_clip);
    } else {
      inherited_clip_in_target_space = MathUtil::ProjectClippedRect(
          parent_to_target, parent_clip_node->data.combined_clip);
    }

    // When render surface inherits its parent target space clip, the layer
    // that created the clip node doesn't apply any clip. So, we shouldn't clip
    // using the clip value stored in the clip node.
    gfx::RectF intersected_in_target_space;
    if (!clip_node->data.inherit_parent_target_space_clip) {
      gfx::RectF clip_in_target_space =
          MathUtil::MapClippedRect(clip_to_target, clip_node->data.clip);

      intersected_in_target_space = gfx::IntersectRects(
          inherited_clip_in_target_space, clip_in_target_space);
    } else {
      intersected_in_target_space = inherited_clip_in_target_space;
    }
    clip_node->data.clip_in_target_space = intersected_in_target_space;

    clip_node->data.combined_clip = MathUtil::ProjectClippedRect(
        target_to_clip, intersected_in_target_space);

    if (!clip_node->data.inherit_parent_target_space_clip)
      clip_node->data.combined_clip.Intersect(clip_node->data.clip);
  }
  clip_tree->set_needs_update(false);
}

void ComputeTransforms(TransformTree* transform_tree) {
  if (!transform_tree->needs_update())
    return;
  for (int i = 1; i < static_cast<int>(transform_tree->size()); ++i)
    transform_tree->UpdateTransforms(i);
  transform_tree->set_needs_update(false);
}

void ComputeOpacities(EffectTree* effect_tree) {
  if (!effect_tree->needs_update())
    return;
  for (int i = 1; i < static_cast<int>(effect_tree->size()); ++i)
    effect_tree->UpdateOpacities(i);
  effect_tree->set_needs_update(false);
}

template <typename LayerType>
void ComputeVisibleRectsUsingPropertyTreesInternal(
    LayerType* root_layer,
    PropertyTrees* property_trees,
    typename LayerType::LayerListType* update_layer_list) {
  if (property_trees->transform_tree.needs_update())
    property_trees->clip_tree.set_needs_update(true);
  ComputeTransforms(&property_trees->transform_tree);
  ComputeClips(&property_trees->clip_tree, property_trees->transform_tree);
  ComputeOpacities(&property_trees->effect_tree);

  const bool subtree_is_visible_from_ancestor = true;
  std::vector<LayerType*> visible_layer_list;
  FindLayersThatNeedUpdates(root_layer, property_trees->transform_tree,
                            subtree_is_visible_from_ancestor, update_layer_list,
                            &visible_layer_list);
  CalculateVisibleRects<LayerType>(visible_layer_list,
                                   property_trees->clip_tree,
                                   property_trees->transform_tree);
}

void BuildPropertyTreesAndComputeVisibleRects(
    Layer* root_layer,
    const Layer* page_scale_layer,
    const Layer* inner_viewport_scroll_layer,
    const Layer* outer_viewport_scroll_layer,
    float page_scale_factor,
    float device_scale_factor,
    const gfx::Rect& viewport,
    const gfx::Transform& device_transform,
    PropertyTrees* property_trees,
    LayerList* update_layer_list) {
  PropertyTreeBuilder::BuildPropertyTrees(
      root_layer, page_scale_layer, inner_viewport_scroll_layer,
      outer_viewport_scroll_layer, page_scale_factor, device_scale_factor,
      viewport, device_transform, property_trees);
  ComputeVisibleRectsUsingPropertyTrees(root_layer, property_trees,
                                        update_layer_list);
}

void BuildPropertyTreesAndComputeVisibleRects(
    LayerImpl* root_layer,
    const LayerImpl* page_scale_layer,
    const LayerImpl* inner_viewport_scroll_layer,
    const LayerImpl* outer_viewport_scroll_layer,
    float page_scale_factor,
    float device_scale_factor,
    const gfx::Rect& viewport,
    const gfx::Transform& device_transform,
    PropertyTrees* property_trees,
    LayerImplList* update_layer_list) {
  PropertyTreeBuilder::BuildPropertyTrees(
      root_layer, page_scale_layer, inner_viewport_scroll_layer,
      outer_viewport_scroll_layer, page_scale_factor, device_scale_factor,
      viewport, device_transform, property_trees);
  ComputeVisibleRectsUsingPropertyTrees(root_layer, property_trees,
                                        update_layer_list);
}

void ComputeVisibleRectsUsingPropertyTrees(Layer* root_layer,
                                           PropertyTrees* property_trees,
                                           LayerList* update_layer_list) {
  ComputeVisibleRectsUsingPropertyTreesInternal(root_layer, property_trees,
                                                update_layer_list);
}

void ComputeVisibleRectsUsingPropertyTrees(LayerImpl* root_layer,
                                           PropertyTrees* property_trees,
                                           LayerImplList* update_layer_list) {
  ComputeVisibleRectsUsingPropertyTreesInternal(root_layer, property_trees,
                                                update_layer_list);
}

template <typename LayerType>
gfx::Transform DrawTransformFromPropertyTreesInternal(
    const LayerType* layer,
    const TransformTree& tree) {
  const TransformNode* node = tree.Node(layer->transform_tree_index());

  gfx::Transform xform;
  const bool owns_non_root_surface = layer->parent() && layer->render_surface();
  if (!owns_non_root_surface) {
    // If you're not the root, or you don't own a surface, you need to apply
    // your local offset.
    xform = node->data.to_target;
    if (layer->should_flatten_transform_from_property_tree())
      xform.FlattenTo2d();
    xform.Translate(layer->offset_to_transform_parent().x(),
                    layer->offset_to_transform_parent().y());
  } else {
    // Surfaces need to apply their sublayer scale.
    xform.Scale(node->data.sublayer_scale.x(), node->data.sublayer_scale.y());
  }
  return xform;
}

gfx::Transform DrawTransformFromPropertyTrees(const Layer* layer,
                                              const TransformTree& tree) {
  return DrawTransformFromPropertyTreesInternal(layer, tree);
}

gfx::Transform DrawTransformFromPropertyTrees(const LayerImpl* layer,
                                              const TransformTree& tree) {
  return DrawTransformFromPropertyTreesInternal(layer, tree);
}

gfx::Transform DrawTransformOfRenderSurfaceFromPropertyTrees(
    const RenderSurfaceImpl* render_surface,
    const TransformTree& tree) {
  const TransformNode* node = tree.Node(render_surface->TransformTreeIndex());
  gfx::Transform render_surface_transform;
  // The draw transform of root render surface is identity tranform.
  if (node->id == 1)
    return render_surface_transform;
  const TransformNode* target_node = tree.Node(node->data.target_id);
  if (target_node->id == 1)
    target_node = tree.Node(0);
  tree.ComputeTransformWithDestinationSublayerScale(node->id, target_node->id,
                                                    &render_surface_transform);
  if (node->data.sublayer_scale.x() != 0.0 &&
      node->data.sublayer_scale.y() != 0.0)
    render_surface_transform.Scale(1.0 / node->data.sublayer_scale.x(),
                                   1.0 / node->data.sublayer_scale.y());
  return render_surface_transform;
}

bool RenderSurfaceIsClippedFromPropertyTrees(
    const RenderSurfaceImpl* render_surface,
    const ClipTree& tree) {
  const ClipNode* node = tree.Node(render_surface->ClipTreeIndex());
  // If the render surface's owning layer doesn't form a clip node, it is not
  // clipped.
  if (render_surface->OwningLayerId() != node->owner_id)
    return false;
  return node->data.render_surface_is_clipped;
}

gfx::Rect ClipRectOfRenderSurfaceFromPropertyTrees(
    const RenderSurfaceImpl* render_surface,
    const ClipTree& clip_tree) {
  if (!RenderSurfaceIsClippedFromPropertyTrees(render_surface, clip_tree))
    return gfx::Rect();
  const ClipNode* clip_node = clip_tree.Node(render_surface->ClipTreeIndex());
  const ClipNode* parent_clip_node = clip_tree.parent(clip_node);
  return gfx::ToEnclosingRect(parent_clip_node->data.clip_in_target_space);
}

gfx::Transform ScreenSpaceTransformOfRenderSurfaceFromPropertyTrees(
    RenderSurfaceImpl* render_surface,
    const TransformTree& tree) {
  const TransformNode* node = tree.Node(render_surface->TransformTreeIndex());
  gfx::Transform screen_space_transform;
  // The screen space transform of root render surface is identity tranform.
  if (node->id == 1)
    return screen_space_transform;
  screen_space_transform = node->data.to_screen;
  if (node->data.sublayer_scale.x() != 0.0 &&
      node->data.sublayer_scale.y() != 0.0)
    screen_space_transform.Scale(1.0 / node->data.sublayer_scale.x(),
                                 1.0 / node->data.sublayer_scale.y());
  return screen_space_transform;
}

template <typename LayerType>
gfx::Transform ScreenSpaceTransformFromPropertyTreesInternal(
    LayerType* layer,
    const TransformTree& tree) {
  gfx::Transform xform(1, 0, 0, 1, layer->offset_to_transform_parent().x(),
                       layer->offset_to_transform_parent().y());
  if (layer->transform_tree_index() >= 0) {
    gfx::Transform ssxform =
        tree.Node(layer->transform_tree_index())->data.to_screen;
    xform.ConcatTransform(ssxform);
    if (layer->should_flatten_transform_from_property_tree())
      xform.FlattenTo2d();
  }
  return xform;
}

gfx::Transform ScreenSpaceTransformFromPropertyTrees(
    const Layer* layer,
    const TransformTree& tree) {
  return ScreenSpaceTransformFromPropertyTreesInternal(layer, tree);
}

gfx::Transform ScreenSpaceTransformFromPropertyTrees(
    const LayerImpl* layer,
    const TransformTree& tree) {
  return ScreenSpaceTransformFromPropertyTreesInternal(layer, tree);
}

template <typename LayerType>
bool ScreenSpaceTransformIsAnimatingFromPropertyTreesInternal(
    LayerType* layer,
    const TransformTree& tree) {
  return tree.Node(layer->transform_tree_index())->data.to_screen_is_animated;
}

bool ScreenSpaceTransformIsAnimatingFromPropertyTrees(
    const Layer* layer,
    const TransformTree& tree) {
  return ScreenSpaceTransformIsAnimatingFromPropertyTreesInternal(layer, tree);
}

bool ScreenSpaceTransformIsAnimatingFromPropertyTrees(
    const LayerImpl* layer,
    const TransformTree& tree) {
  return ScreenSpaceTransformIsAnimatingFromPropertyTreesInternal(layer, tree);
}

template <typename LayerType>
float DrawOpacityFromPropertyTreesInternal(LayerType layer,
                                           const EffectTree& tree) {
  if (!layer->render_target())
    return 0.f;

  const EffectNode* target_node =
      tree.Node(layer->render_target()->effect_tree_index());
  const EffectNode* node = tree.Node(layer->effect_tree_index());
  if (node == target_node)
    return 1.f;

  float draw_opacity = 1.f;
  while (node != target_node) {
    draw_opacity *= node->data.opacity;
    node = tree.parent(node);
  }
  return draw_opacity;
}

float DrawOpacityFromPropertyTrees(const Layer* layer, const EffectTree& tree) {
  return DrawOpacityFromPropertyTreesInternal(layer, tree);
}

float DrawOpacityFromPropertyTrees(const LayerImpl* layer,
                                   const EffectTree& tree) {
  return DrawOpacityFromPropertyTreesInternal(layer, tree);
}

bool CanUseLcdTextFromPropertyTrees(const LayerImpl* layer,
                                    bool layers_always_allowed_lcd_text,
                                    bool can_use_lcd_text,
                                    PropertyTrees* property_trees) {
  if (layers_always_allowed_lcd_text)
    return true;
  if (!can_use_lcd_text)
    return false;
  if (!layer->contents_opaque())
    return false;
  DCHECK(!property_trees->transform_tree.needs_update());
  DCHECK(!property_trees->effect_tree.needs_update());

  const EffectNode* opacity_node =
      property_trees->effect_tree.Node(layer->effect_tree_index());
  if (opacity_node->data.screen_space_opacity != 1.f)
    return false;
  const TransformNode* transform_node =
      property_trees->transform_tree.Node(layer->transform_tree_index());
  if (!transform_node->data.node_and_ancestors_have_only_integer_translation)
    return false;
  if (static_cast<int>(layer->offset_to_transform_parent().x()) !=
      layer->offset_to_transform_parent().x())
    return false;
  if (static_cast<int>(layer->offset_to_transform_parent().y()) !=
      layer->offset_to_transform_parent().y())
    return false;
  return true;
}

gfx::Rect DrawableContentRectFromPropertyTrees(
    const LayerImpl* layer,
    const TransformTree& transform_tree) {
  gfx::Rect drawable_content_rect = MathUtil::MapEnclosingClippedRect(
      DrawTransformFromPropertyTrees(layer, transform_tree),
      gfx::Rect(layer->bounds()));
  if (layer->is_clipped() && layer->clip_tree_index() > 0) {
    drawable_content_rect.Intersect(
        layer->clip_rect_in_target_space_from_property_trees());
  }
  return drawable_content_rect;
}

gfx::Rect ClipRectFromPropertyTrees(const LayerImpl* layer,
                                    const TransformTree& transform_tree) {
  if (layer->is_clipped() && layer->clip_tree_index() > 0)
    return layer->clip_rect_in_target_space_from_property_trees();
  return MathUtil::MapEnclosingClippedRect(
      DrawTransformFromPropertyTrees(layer, transform_tree),
      gfx::Rect(layer->bounds()));
}

}  // namespace cc