1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
|
// Copyright 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/trees/layer_sorter.h"
#include <algorithm>
#include <deque>
#include <limits>
#include <vector>
#include "base/logging.h"
#include "cc/base/math_util.h"
#include "cc/layers/render_surface_impl.h"
#include "ui/gfx/transform.h"
namespace cc {
// This epsilon is used to determine if two layers are too close to each other
// to be able to tell which is in front of the other. It's a relative epsilon
// so it is robust to changes in scene scale. This value was chosen by picking
// a value near machine epsilon and then increasing it until the flickering on
// the test scene went away.
const float k_layer_epsilon = 1e-4f;
inline static float PerpProduct(gfx::Vector2dF u, gfx::Vector2dF v) {
return u.x() * v.y() - u.y() * v.x();
}
// Tests if two edges defined by their endpoints (a,b) and (c,d) intersect.
// Returns true and the point of intersection if they do and false otherwise.
static bool EdgeEdgeTest(gfx::PointF a,
gfx::PointF b,
gfx::PointF c,
gfx::PointF d,
gfx::PointF* r) {
gfx::Vector2dF u = b - a;
gfx::Vector2dF v = d - c;
gfx::Vector2dF w = a - c;
float denom = PerpProduct(u, v);
// If denom == 0 then the edges are parallel. While they could be overlapping
// we don't bother to check here as the we'll find their intersections from
// the corner to quad tests.
if (!denom)
return false;
float s = PerpProduct(v, w) / denom;
if (s < 0.f || s > 1.f)
return false;
float t = PerpProduct(u, w) / denom;
if (t < 0.f || t > 1.f)
return false;
u.Scale(s);
*r = a + u;
return true;
}
GraphNode::GraphNode(LayerImpl* layer_impl)
: layer(layer_impl),
incoming_edge_weight(0.f) {}
GraphNode::~GraphNode() {}
LayerSorter::LayerSorter()
: z_range_(0.f) {}
LayerSorter::~LayerSorter() {}
static float CheckFloatingPointNumericAccuracy(float a, float b) {
float abs_dif = std::abs(b - a);
float abs_max = std::max(std::abs(b), std::abs(a));
// Check to see if we've got a result with a reasonable amount of error.
return abs_dif / abs_max;
}
// Checks whether layer "a" draws on top of layer "b". The weight value returned
// is an indication of the maximum z-depth difference between the layers or zero
// if the layers are found to be intesecting (some features are in front and
// some are behind).
LayerSorter::ABCompareResult LayerSorter::CheckOverlap(LayerShape* a,
LayerShape* b,
float z_threshold,
float* weight) {
*weight = 0.f;
// Early out if the projected bounds don't overlap.
if (!a->projected_bounds.Intersects(b->projected_bounds))
return None;
gfx::PointF aPoints[4] = { a->projected_quad.p1(),
a->projected_quad.p2(),
a->projected_quad.p3(),
a->projected_quad.p4() };
gfx::PointF bPoints[4] = { b->projected_quad.p1(),
b->projected_quad.p2(),
b->projected_quad.p3(),
b->projected_quad.p4() };
// Make a list of points that inside both layer quad projections.
std::vector<gfx::PointF> overlap_points;
// Check all four corners of one layer against the other layer's quad.
for (int i = 0; i < 4; ++i) {
if (a->projected_quad.Contains(bPoints[i]))
overlap_points.push_back(bPoints[i]);
if (b->projected_quad.Contains(aPoints[i]))
overlap_points.push_back(aPoints[i]);
}
// Check all the edges of one layer for intersection with the other layer's
// edges.
gfx::PointF r;
for (int ea = 0; ea < 4; ++ea)
for (int eb = 0; eb < 4; ++eb)
if (EdgeEdgeTest(aPoints[ea], aPoints[(ea + 1) % 4],
bPoints[eb], bPoints[(eb + 1) % 4],
&r))
overlap_points.push_back(r);
if (overlap_points.empty())
return None;
// Check the corresponding layer depth value for all overlap points to
// determine which layer is in front.
float max_positive = 0.f;
float max_negative = 0.f;
// This flag tracks the existance of a numerically accurate seperation
// between two layers. If there is no accurate seperation, the layers
// cannot be effectively sorted.
bool accurate = false;
for (size_t o = 0; o < overlap_points.size(); o++) {
float za = a->LayerZFromProjectedPoint(overlap_points[o]);
float zb = b->LayerZFromProjectedPoint(overlap_points[o]);
// Here we attempt to avoid numeric issues with layers that are too
// close together. If we have 2-sided quads that are very close
// together then we will draw them in document order to avoid
// flickering. The correct solution is for the content maker to turn
// on back-face culling or move the quads apart (if they're not two
// sides of one object).
if (CheckFloatingPointNumericAccuracy(za, zb) > k_layer_epsilon)
accurate = true;
float diff = za - zb;
if (diff > max_positive)
max_positive = diff;
if (diff < max_negative)
max_negative = diff;
}
// If we can't tell which should come first, we use document order.
if (!accurate)
return ABeforeB;
float max_diff =
std::abs(max_positive) > std::abs(max_negative) ?
max_positive : max_negative;
// If the results are inconsistent (and the z difference substantial to rule
// out numerical errors) then the layers are intersecting. We will still
// return an order based on the maximum depth difference but with an edge
// weight of zero these layers will get priority if a graph cycle is present
// and needs to be broken.
if (max_positive > z_threshold && max_negative < -z_threshold)
*weight = 0.f;
else
*weight = std::abs(max_diff);
// Maintain relative order if the layers have the same depth at all
// intersection points.
if (max_diff <= 0.f)
return ABeforeB;
return BBeforeA;
}
LayerShape::LayerShape() {}
LayerShape::LayerShape(float width,
float height,
const gfx::Transform& draw_transform) {
gfx::QuadF layer_quad(gfx::RectF(0.f, 0.f, width, height));
// Compute the projection of the layer quad onto the z = 0 plane.
gfx::PointF clipped_quad[8];
int num_vertices_in_clipped_quad;
MathUtil::MapClippedQuad(draw_transform,
layer_quad,
clipped_quad,
&num_vertices_in_clipped_quad);
if (num_vertices_in_clipped_quad < 3) {
projected_bounds = gfx::RectF();
return;
}
projected_bounds =
MathUtil::ComputeEnclosingRectOfVertices(clipped_quad,
num_vertices_in_clipped_quad);
// NOTE: it will require very significant refactoring and overhead to deal
// with generalized polygons or multiple quads per layer here. For the sake of
// layer sorting it is equally correct to take a subsection of the polygon
// that can be made into a quad. This will only be incorrect in the case of
// intersecting layers, which are not supported yet anyway.
projected_quad.set_p1(clipped_quad[0]);
projected_quad.set_p2(clipped_quad[1]);
projected_quad.set_p3(clipped_quad[2]);
if (num_vertices_in_clipped_quad >= 4) {
projected_quad.set_p4(clipped_quad[3]);
} else {
// This will be a degenerate quad that is actually a triangle.
projected_quad.set_p4(clipped_quad[2]);
}
// Compute the normal of the layer's plane.
bool clipped = false;
gfx::Point3F c1 =
MathUtil::MapPoint(draw_transform, gfx::Point3F(0.f, 0.f, 0.f), &clipped);
gfx::Point3F c2 =
MathUtil::MapPoint(draw_transform, gfx::Point3F(0.f, 1.f, 0.f), &clipped);
gfx::Point3F c3 =
MathUtil::MapPoint(draw_transform, gfx::Point3F(1.f, 0.f, 0.f), &clipped);
// TODO(shawnsingh): Deal with clipping.
gfx::Vector3dF c12 = c2 - c1;
gfx::Vector3dF c13 = c3 - c1;
layer_normal = gfx::CrossProduct(c13, c12);
transform_origin = c1;
}
LayerShape::~LayerShape() {}
// Returns the Z coordinate of a point on the layer that projects
// to point p which lies on the z = 0 plane. It does it by computing the
// intersection of a line starting from p along the Z axis and the plane
// of the layer.
float LayerShape::LayerZFromProjectedPoint(gfx::PointF p) const {
gfx::Vector3dF z_axis(0.f, 0.f, 1.f);
gfx::Vector3dF w = gfx::Point3F(p) - transform_origin;
float d = gfx::DotProduct(layer_normal, z_axis);
float n = -gfx::DotProduct(layer_normal, w);
// Check if layer is parallel to the z = 0 axis which will make it
// invisible and hence returning zero is fine.
if (!d)
return 0.f;
// The intersection point would be given by:
// p + (n / d) * u but since we are only interested in the
// z coordinate and p's z coord is zero, all we need is the value of n/d.
return n / d;
}
void LayerSorter::CreateGraphNodes(LayerImplList::iterator first,
LayerImplList::iterator last) {
DVLOG(2) << "Creating graph nodes:";
float min_z = FLT_MAX;
float max_z = -FLT_MAX;
for (LayerImplList::const_iterator it = first; it < last; it++) {
nodes_.push_back(GraphNode(*it));
GraphNode& node = nodes_.at(nodes_.size() - 1);
RenderSurfaceImpl* render_surface = node.layer->render_surface();
if (!node.layer->DrawsContent() && !render_surface)
continue;
DVLOG(2) << "Layer " << node.layer->id() <<
" (" << node.layer->bounds().width() <<
" x " << node.layer->bounds().height() << ")";
gfx::Transform draw_transform;
float layer_width, layer_height;
if (render_surface) {
draw_transform = render_surface->draw_transform();
layer_width = render_surface->content_rect().width();
layer_height = render_surface->content_rect().height();
} else {
draw_transform = node.layer->draw_transform();
layer_width = node.layer->content_bounds().width();
layer_height = node.layer->content_bounds().height();
}
node.shape = LayerShape(layer_width, layer_height, draw_transform);
max_z = std::max(max_z, node.shape.transform_origin.z());
min_z = std::min(min_z, node.shape.transform_origin.z());
}
z_range_ = std::abs(max_z - min_z);
}
void LayerSorter::CreateGraphEdges() {
DVLOG(2) << "Edges:";
// Fraction of the total z_range below which z differences
// are not considered reliable.
const float z_threshold_factor = 0.01f;
float z_threshold = z_range_ * z_threshold_factor;
for (size_t na = 0; na < nodes_.size(); na++) {
GraphNode& node_a = nodes_[na];
if (!node_a.layer->DrawsContent() && !node_a.layer->render_surface())
continue;
for (size_t nb = na + 1; nb < nodes_.size(); nb++) {
GraphNode& node_b = nodes_[nb];
if (!node_b.layer->DrawsContent() && !node_b.layer->render_surface())
continue;
float weight = 0.f;
ABCompareResult overlap_result = CheckOverlap(&node_a.shape,
&node_b.shape,
z_threshold,
&weight);
GraphNode* start_node = NULL;
GraphNode* end_node = NULL;
if (overlap_result == ABeforeB) {
start_node = &node_a;
end_node = &node_b;
} else if (overlap_result == BBeforeA) {
start_node = &node_b;
end_node = &node_a;
}
if (start_node) {
DVLOG(2) << start_node->layer->id() << " -> " << end_node->layer->id();
edges_.push_back(GraphEdge(start_node, end_node, weight));
}
}
}
for (size_t i = 0; i < edges_.size(); i++) {
GraphEdge& edge = edges_[i];
active_edges_[&edge] = &edge;
edge.from->outgoing.push_back(&edge);
edge.to->incoming.push_back(&edge);
edge.to->incoming_edge_weight += edge.weight;
}
}
// Finds and removes an edge from the list by doing a swap with the
// last element of the list.
void LayerSorter::RemoveEdgeFromList(GraphEdge* edge,
std::vector<GraphEdge*>* list) {
std::vector<GraphEdge*>::iterator iter =
std::find(list->begin(), list->end(), edge);
DCHECK(iter != list->end());
list->erase(iter);
}
// Sorts the given list of layers such that they can be painted in a
// back-to-front order. Sorting produces correct results for non-intersecting
// layers that don't have cyclical order dependencies. Cycles and intersections
// are broken (somewhat) aribtrarily. Sorting of layers is done via a
// topological sort of a directed graph whose nodes are the layers themselves.
// An edge from node A to node B signifies that layer A needs to be drawn before
// layer B. If A and B have no dependency between each other, then we preserve
// the ordering of those layers as they were in the original list.
//
// The draw order between two layers is determined by projecting the two
// triangles making up each layer quad to the Z = 0 plane, finding points of
// intersection between the triangles and backprojecting those points to the
// plane of the layer to determine the corresponding Z coordinate. The layer
// with the lower Z coordinate (farther from the eye) needs to be rendered
// first.
//
// If the layer projections don't intersect, then no edges (dependencies) are
// created between them in the graph. HOWEVER, in this case we still need to
// preserve the ordering of the original list of layers, since that list should
// already have proper z-index ordering of layers.
//
void LayerSorter::Sort(LayerImplList::iterator first,
LayerImplList::iterator last) {
DVLOG(2) << "Sorting start ----";
CreateGraphNodes(first, last);
CreateGraphEdges();
std::vector<GraphNode*> sorted_list;
std::deque<GraphNode*> no_incoming_edge_node_list;
// Find all the nodes that don't have incoming edges.
for (NodeList::iterator la = nodes_.begin(); la < nodes_.end(); la++) {
if (!la->incoming.size())
no_incoming_edge_node_list.push_back(&(*la));
}
DVLOG(2) << "Sorted list: ";
while (active_edges_.size() || no_incoming_edge_node_list.size()) {
while (no_incoming_edge_node_list.size()) {
// It is necessary to preserve the existing ordering of layers, when there
// are no explicit dependencies (because this existing ordering has
// correct z-index/layout ordering). To preserve this ordering, we process
// Nodes in the same order that they were added to the list.
GraphNode* from_node = no_incoming_edge_node_list.front();
no_incoming_edge_node_list.pop_front();
// Add it to the final list.
sorted_list.push_back(from_node);
DVLOG(2) << from_node->layer->id() << ", ";
// Remove all its outgoing edges from the graph.
for (size_t i = 0; i < from_node->outgoing.size(); i++) {
GraphEdge* outgoing_edge = from_node->outgoing[i];
active_edges_.erase(outgoing_edge);
RemoveEdgeFromList(outgoing_edge, &outgoing_edge->to->incoming);
outgoing_edge->to->incoming_edge_weight -= outgoing_edge->weight;
if (!outgoing_edge->to->incoming.size())
no_incoming_edge_node_list.push_back(outgoing_edge->to);
}
from_node->outgoing.clear();
}
if (!active_edges_.size())
break;
// If there are still active edges but the list of nodes without incoming
// edges is empty then we have run into a cycle. Break the cycle by finding
// the node with the smallest overall incoming edge weight and use it. This
// will favor nodes that have zero-weight incoming edges i.e. layers that
// are being occluded by a layer that intersects them.
float min_incoming_edge_weight = FLT_MAX;
GraphNode* next_node = NULL;
for (size_t i = 0; i < nodes_.size(); i++) {
if (nodes_[i].incoming.size() &&
nodes_[i].incoming_edge_weight < min_incoming_edge_weight) {
min_incoming_edge_weight = nodes_[i].incoming_edge_weight;
next_node = &nodes_[i];
}
}
DCHECK(next_node);
// Remove all its incoming edges.
for (size_t e = 0; e < next_node->incoming.size(); e++) {
GraphEdge* incoming_edge = next_node->incoming[e];
active_edges_.erase(incoming_edge);
RemoveEdgeFromList(incoming_edge, &incoming_edge->from->outgoing);
}
next_node->incoming.clear();
next_node->incoming_edge_weight = 0.f;
no_incoming_edge_node_list.push_back(next_node);
DVLOG(2) << "Breaking cycle by cleaning up incoming edges from " <<
next_node->layer->id() <<
" (weight = " << min_incoming_edge_weight << ")";
}
// Note: The original elements of the list are in no danger of having their
// ref count go to zero here as they are all nodes of the layer hierarchy and
// are kept alive by their parent nodes.
int count = 0;
for (LayerImplList::iterator it = first; it < last; it++)
*it = sorted_list[count++]->layer;
DVLOG(2) << "Sorting end ----";
nodes_.clear();
edges_.clear();
active_edges_.clear();
}
} // namespace cc
|