summaryrefslogtreecommitdiffstats
path: root/cc/trees/layer_tree_host_common.cc
blob: 2335f4e0315b29726af6279526ed3c26955ca29f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
// Copyright 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "cc/trees/layer_tree_host_common.h"

#include <algorithm>

#include "base/debug/trace_event.h"
#include "cc/base/math_util.h"
#include "cc/layers/heads_up_display_layer_impl.h"
#include "cc/layers/layer.h"
#include "cc/layers/layer_impl.h"
#include "cc/layers/layer_iterator.h"
#include "cc/layers/render_surface.h"
#include "cc/layers/render_surface_impl.h"
#include "cc/trees/layer_sorter.h"
#include "cc/trees/layer_tree_impl.h"
#include "ui/gfx/rect_conversions.h"
#include "ui/gfx/transform.h"

namespace cc {

ScrollAndScaleSet::ScrollAndScaleSet() {}

ScrollAndScaleSet::~ScrollAndScaleSet() {}

static void SortLayers(LayerList::iterator forst,
                       LayerList::iterator end,
                       void* layer_sorter) {
  NOTREACHED();
}

static void SortLayers(LayerImplList::iterator first,
                       LayerImplList::iterator end,
                       LayerSorter* layer_sorter) {
  DCHECK(layer_sorter);
  TRACE_EVENT0("cc", "LayerTreeHostCommon::SortLayers");
  layer_sorter->Sort(first, end);
}

template <typename LayerType>
static gfx::Vector2dF GetEffectiveScrollDelta(LayerType* layer) {
  gfx::Vector2dF scroll_delta = layer->ScrollDelta();
  // The scroll parent's scroll delta is the amount we've scrolled on the
  // compositor thread since the commit for this layer tree's source frame.
  // we last reported to the main thread. I.e., it's the discrepancy between
  // a scroll parent's scroll delta and offset, so we must add it here.
  if (layer->scroll_parent())
    scroll_delta += layer->scroll_parent()->ScrollDelta();
  return scroll_delta;
}

template <typename LayerType>
static gfx::Vector2dF GetEffectiveTotalScrollOffset(LayerType* layer) {
  gfx::Vector2dF offset = layer->TotalScrollOffset();
  // The scroll parent's total scroll offset (scroll offset + scroll delta)
  // can't be used because its scroll offset has already been applied to the
  // scroll children's positions by the main thread layer positioning code.
  if (layer->scroll_parent())
    offset += layer->scroll_parent()->ScrollDelta();
  return offset;
}

inline gfx::Rect CalculateVisibleRectWithCachedLayerRect(
    const gfx::Rect& target_surface_rect,
    const gfx::Rect& layer_bound_rect,
    const gfx::Rect& layer_rect_in_target_space,
    const gfx::Transform& transform) {
  if (layer_rect_in_target_space.IsEmpty())
    return gfx::Rect();

  // Is this layer fully contained within the target surface?
  if (target_surface_rect.Contains(layer_rect_in_target_space))
    return layer_bound_rect;

  // If the layer doesn't fill up the entire surface, then find the part of
  // the surface rect where the layer could be visible. This avoids trying to
  // project surface rect points that are behind the projection point.
  gfx::Rect minimal_surface_rect = target_surface_rect;
  minimal_surface_rect.Intersect(layer_rect_in_target_space);

  if (minimal_surface_rect.IsEmpty())
      return gfx::Rect();

  // Project the corners of the target surface rect into the layer space.
  // This bounding rectangle may be larger than it needs to be (being
  // axis-aligned), but is a reasonable filter on the space to consider.
  // Non-invertible transforms will create an empty rect here.

  gfx::Transform surface_to_layer(gfx::Transform::kSkipInitialization);
  if (!transform.GetInverse(&surface_to_layer)) {
    // Because we cannot use the surface bounds to determine what portion of
    // the layer is visible, we must conservatively assume the full layer is
    // visible.
    return layer_bound_rect;
  }

  gfx::Rect layer_rect = MathUtil::ProjectEnclosingClippedRect(
      surface_to_layer, minimal_surface_rect);
  layer_rect.Intersect(layer_bound_rect);
  return layer_rect;
}

gfx::Rect LayerTreeHostCommon::CalculateVisibleRect(
    const gfx::Rect& target_surface_rect,
    const gfx::Rect& layer_bound_rect,
    const gfx::Transform& transform) {
  gfx::Rect layer_in_surface_space =
      MathUtil::MapEnclosingClippedRect(transform, layer_bound_rect);
  return CalculateVisibleRectWithCachedLayerRect(
      target_surface_rect, layer_bound_rect, layer_in_surface_space, transform);
}

template <typename LayerType>
static LayerType* NextTargetSurface(LayerType* layer) {
  return layer->parent() ? layer->parent()->render_target() : 0;
}

// Given two layers, this function finds their respective render targets and,
// computes a change of basis translation. It does this by accumulating the
// translation components of the draw transforms of each target between the
// ancestor and descendant. These transforms must be 2D translations, and this
// requirement is enforced at every step.
template <typename LayerType>
static gfx::Vector2dF ComputeChangeOfBasisTranslation(
    const LayerType& ancestor_layer,
    const LayerType& descendant_layer) {
  DCHECK(descendant_layer.HasAncestor(&ancestor_layer));
  const LayerType* descendant_target = descendant_layer.render_target();
  DCHECK(descendant_target);
  const LayerType* ancestor_target = ancestor_layer.render_target();
  DCHECK(ancestor_target);

  gfx::Vector2dF translation;
  for (const LayerType* target = descendant_target; target != ancestor_target;
       target = NextTargetSurface(target)) {
    const gfx::Transform& trans = target->render_surface()->draw_transform();
    // Ensure that this translation is truly 2d.
    DCHECK(trans.IsIdentityOrTranslation());
    DCHECK_EQ(0.f, trans.matrix().get(2, 3));
    translation += trans.To2dTranslation();
  }

  return translation;
}

enum TranslateRectDirection {
  TranslateRectDirectionToAncestor,
  TranslateRectDirectionToDescendant
};

template <typename LayerType>
static gfx::Rect TranslateRectToTargetSpace(const LayerType& ancestor_layer,
                                            const LayerType& descendant_layer,
                                            const gfx::Rect& rect,
                                            TranslateRectDirection direction) {
  gfx::Vector2dF translation = ComputeChangeOfBasisTranslation<LayerType>(
      ancestor_layer, descendant_layer);
  if (direction == TranslateRectDirectionToDescendant)
    translation.Scale(-1.f);
  return gfx::ToEnclosingRect(
      gfx::RectF(rect.origin() + translation, rect.size()));
}

// Attempts to update the clip rects for the given layer. If the layer has a
// clip_parent, it may not inherit its immediate ancestor's clip.
template <typename LayerType>
static void UpdateClipRectsForClipChild(
    const LayerType* layer,
    gfx::Rect* clip_rect_in_parent_target_space,
    bool* subtree_should_be_clipped) {
  // If the layer has no clip_parent, or the ancestor is the same as its actual
  // parent, then we don't need special clip rects. Bail now and leave the out
  // parameters untouched.
  const LayerType* clip_parent = layer->scroll_parent();

  if (!clip_parent)
    clip_parent = layer->clip_parent();

  if (!clip_parent || clip_parent == layer->parent())
    return;

  // The root layer is never a clip child.
  DCHECK(layer->parent());

  // Grab the cached values.
  *clip_rect_in_parent_target_space = clip_parent->clip_rect();
  *subtree_should_be_clipped = clip_parent->is_clipped();

  // We may have to project the clip rect into our parent's target space. Note,
  // it must be our parent's target space, not ours. For one, we haven't
  // computed our transforms, so we couldn't put it in our space yet even if we
  // wanted to. But more importantly, this matches the expectations of
  // CalculateDrawPropertiesInternal. If we, say, create a render surface, these
  // clip rects will want to be in its target space, not ours.
  if (clip_parent == layer->clip_parent()) {
    *clip_rect_in_parent_target_space = TranslateRectToTargetSpace<LayerType>(
        *clip_parent,
        *layer->parent(),
        *clip_rect_in_parent_target_space,
        TranslateRectDirectionToDescendant);
  } else {
    // If we're being clipped by our scroll parent, we must translate through
    // our common ancestor. This happens to be our parent, so it is sufficent to
    // translate from our clip parent's space to the space of its ancestor (our
    // parent).
    *clip_rect_in_parent_target_space =
        TranslateRectToTargetSpace<LayerType>(*layer->parent(),
                                              *clip_parent,
                                              *clip_rect_in_parent_target_space,
                                              TranslateRectDirectionToAncestor);
  }
}

// We collect an accumulated drawable content rect per render surface.
// Typically, a layer will contribute to only one surface, the surface
// associated with its render target. Clip children, however, may affect
// several surfaces since there may be several surfaces between the clip child
// and its parent.
//
// NB: we accumulate the layer's *clipped* drawable content rect.
template <typename LayerType>
struct AccumulatedSurfaceState {
  explicit AccumulatedSurfaceState(LayerType* render_target)
      : render_target(render_target) {}

  // The accumulated drawable content rect for the surface associated with the
  // given |render_target|.
  gfx::Rect drawable_content_rect;

  // The target owning the surface. (We hang onto the target rather than the
  // surface so that we can DCHECK that the surface's draw transform is simply
  // a translation when |render_target| reports that it has no unclipped
  // descendants).
  LayerType* render_target;
};

template <typename LayerType>
void UpdateAccumulatedSurfaceState(
    LayerType* layer,
    const gfx::Rect& drawable_content_rect,
    std::vector<AccumulatedSurfaceState<LayerType> >*
        accumulated_surface_state) {
  if (IsRootLayer(layer))
    return;

  // We will apply our drawable content rect to the accumulated rects for all
  // surfaces between us and |render_target| (inclusive). This is either our
  // clip parent's target if we are a clip child, or else simply our parent's
  // target. We use our parent's target because we're either the owner of a
  // render surface and we'll want to add our rect to our *surface's* target, or
  // we're not and our target is the same as our parent's. In both cases, the
  // parent's target gives us what we want.
  LayerType* render_target = layer->clip_parent()
                                 ? layer->clip_parent()->render_target()
                                 : layer->parent()->render_target();

  // If the layer owns a surface, then the content rect is in the wrong space.
  // Instead, we will use the surface's DrawableContentRect which is in target
  // space as required.
  gfx::Rect target_rect = drawable_content_rect;
  if (layer->render_surface()) {
    target_rect =
        gfx::ToEnclosedRect(layer->render_surface()->DrawableContentRect());
  }

  if (render_target->is_clipped()) {
    gfx::Rect clip_rect = render_target->clip_rect();
    // If the layer has a clip parent, the clip rect may be in the wrong space,
    // so we'll need to transform it before it is applied.
    if (layer->clip_parent()) {
      clip_rect = TranslateRectToTargetSpace<LayerType>(
          *layer->clip_parent(),
          *layer,
          clip_rect,
          TranslateRectDirectionToDescendant);
    }
    target_rect.Intersect(clip_rect);
  }

  // We must have at least one entry in the vector for the root.
  DCHECK_LT(0ul, accumulated_surface_state->size());

  typedef typename std::vector<AccumulatedSurfaceState<LayerType> >
      AccumulatedSurfaceStateVector;
  typedef typename AccumulatedSurfaceStateVector::reverse_iterator
      AccumulatedSurfaceStateIterator;
  AccumulatedSurfaceStateIterator current_state =
      accumulated_surface_state->rbegin();

  // Add this rect to the accumulated content rect for all surfaces until we
  // reach the target surface.
  bool found_render_target = false;
  for (; current_state != accumulated_surface_state->rend(); ++current_state) {
    current_state->drawable_content_rect.Union(target_rect);

    // If we've reached |render_target| our work is done and we can bail.
    if (current_state->render_target == render_target) {
      found_render_target = true;
      break;
    }

    // Transform rect from the current target's space to the next.
    LayerType* current_target = current_state->render_target;
    DCHECK(current_target->render_surface());
    const gfx::Transform& current_draw_transform =
         current_target->render_surface()->draw_transform();

    // If we have unclipped descendants, the draw transform is a translation.
    DCHECK(current_target->num_unclipped_descendants() == 0 ||
           current_draw_transform.IsIdentityOrTranslation());

    target_rect = gfx::ToEnclosingRect(
        MathUtil::MapClippedRect(current_draw_transform, target_rect));
  }

  // It is an error to not reach |render_target|. If this happens, it means that
  // either the clip parent is not an ancestor of the clip child or the surface
  // state vector is empty, both of which should be impossible.
  DCHECK(found_render_target);
}

template <typename LayerType> static inline bool IsRootLayer(LayerType* layer) {
  return !layer->parent();
}

template <typename LayerType>
static inline bool LayerIsInExisting3DRenderingContext(LayerType* layer) {
  return layer->is_3d_sorted() && layer->parent() &&
         layer->parent()->is_3d_sorted();
}

template <typename LayerType>
static bool IsRootLayerOfNewRenderingContext(LayerType* layer) {
  if (layer->parent())
    return !layer->parent()->is_3d_sorted() && layer->is_3d_sorted();

  return layer->is_3d_sorted();
}

template <typename LayerType>
static bool IsLayerBackFaceVisible(LayerType* layer) {
  // The current W3C spec on CSS transforms says that backface visibility should
  // be determined differently depending on whether the layer is in a "3d
  // rendering context" or not. For Chromium code, we can determine whether we
  // are in a 3d rendering context by checking if the parent preserves 3d.

  if (LayerIsInExisting3DRenderingContext(layer))
    return layer->draw_transform().IsBackFaceVisible();

  // In this case, either the layer establishes a new 3d rendering context, or
  // is not in a 3d rendering context at all.
  return layer->transform().IsBackFaceVisible();
}

template <typename LayerType>
static bool IsSurfaceBackFaceVisible(LayerType* layer,
                                     const gfx::Transform& draw_transform) {
  if (LayerIsInExisting3DRenderingContext(layer))
    return draw_transform.IsBackFaceVisible();

  if (IsRootLayerOfNewRenderingContext(layer))
    return layer->transform().IsBackFaceVisible();

  // If the render_surface is not part of a new or existing rendering context,
  // then the layers that contribute to this surface will decide back-face
  // visibility for themselves.
  return false;
}

template <typename LayerType>
static inline bool LayerClipsSubtree(LayerType* layer) {
  return layer->masks_to_bounds() || layer->mask_layer();
}

template <typename LayerType>
static gfx::Rect CalculateVisibleContentRect(
    LayerType* layer,
    const gfx::Rect& clip_rect_of_target_surface_in_target_space,
    const gfx::Rect& layer_rect_in_target_space) {
  DCHECK(layer->render_target());

  // Nothing is visible if the layer bounds are empty.
  if (!layer->DrawsContent() || layer->content_bounds().IsEmpty() ||
      layer->drawable_content_rect().IsEmpty())
    return gfx::Rect();

  // Compute visible bounds in target surface space.
  gfx::Rect visible_rect_in_target_surface_space =
      layer->drawable_content_rect();

  if (!layer->render_target()->render_surface()->clip_rect().IsEmpty()) {
    // The |layer| L has a target T which owns a surface Ts. The surface Ts
    // has a target TsT.
    //
    // In this case the target surface Ts does clip the layer L that contributes
    // to it. So, we have to convert the clip rect of Ts from the target space
    // of Ts (that is the space of TsT), to the current render target's space
    // (that is the space of T). This conversion is done outside this function
    // so that it can be cached instead of computing it redundantly for every
    // layer.
    visible_rect_in_target_surface_space.Intersect(
        clip_rect_of_target_surface_in_target_space);
  }

  if (visible_rect_in_target_surface_space.IsEmpty())
    return gfx::Rect();

  return CalculateVisibleRectWithCachedLayerRect(
      visible_rect_in_target_surface_space,
      gfx::Rect(layer->content_bounds()),
      layer_rect_in_target_space,
      layer->draw_transform());
}

static inline bool TransformToParentIsKnown(LayerImpl* layer) { return true; }

static inline bool TransformToParentIsKnown(Layer* layer) {
  return !layer->TransformIsAnimating();
}

static inline bool TransformToScreenIsKnown(LayerImpl* layer) { return true; }

static inline bool TransformToScreenIsKnown(Layer* layer) {
  return !layer->screen_space_transform_is_animating();
}

template <typename LayerType>
static bool LayerShouldBeSkipped(LayerType* layer, bool layer_is_drawn) {
  // Layers can be skipped if any of these conditions are met.
  //   - is not drawn due to it or one of its ancestors being hidden (or having
  //     no copy requests).
  //   - does not draw content.
  //   - is transparent.
  //   - has empty bounds
  //   - the layer is not double-sided, but its back face is visible.
  //
  // Some additional conditions need to be computed at a later point after the
  // recursion is finished.
  //   - the intersection of render_surface content and layer clip_rect is empty
  //   - the visible_content_rect is empty
  //
  // Note, if the layer should not have been drawn due to being fully
  // transparent, we would have skipped the entire subtree and never made it
  // into this function, so it is safe to omit this check here.

  if (!layer_is_drawn)
    return true;

  if (!layer->DrawsContent() || layer->bounds().IsEmpty())
    return true;

  LayerType* backface_test_layer = layer;
  if (layer->use_parent_backface_visibility()) {
    DCHECK(layer->parent());
    DCHECK(!layer->parent()->use_parent_backface_visibility());
    backface_test_layer = layer->parent();
  }

  // The layer should not be drawn if (1) it is not double-sided and (2) the
  // back of the layer is known to be facing the screen.
  if (!backface_test_layer->double_sided() &&
      TransformToScreenIsKnown(backface_test_layer) &&
      IsLayerBackFaceVisible(backface_test_layer))
    return true;

  return false;
}

template <typename LayerType>
static bool HasInvertibleOrAnimatedTransform(LayerType* layer) {
  return layer->transform_is_invertible() || layer->TransformIsAnimating();
}

static inline bool SubtreeShouldBeSkipped(LayerImpl* layer,
                                          bool layer_is_drawn) {
  // If the layer transform is not invertible, it should not be drawn.
  // TODO(ajuma): Correctly process subtrees with singular transform for the
  // case where we may animate to a non-singular transform and wish to
  // pre-raster.
  if (!HasInvertibleOrAnimatedTransform(layer))
    return true;

  // When we need to do a readback/copy of a layer's output, we can not skip
  // it or any of its ancestors.
  if (layer->draw_properties().layer_or_descendant_has_copy_request)
    return false;

  // If the layer is not drawn, then skip it and its subtree.
  if (!layer_is_drawn)
    return true;

  // If layer is on the pending tree and opacity is being animated then
  // this subtree can't be skipped as we need to create, prioritize and
  // include tiles for this layer when deciding if tree can be activated.
  if (layer->layer_tree_impl()->IsPendingTree() && layer->OpacityIsAnimating())
    return false;

  // The opacity of a layer always applies to its children (either implicitly
  // via a render surface or explicitly if the parent preserves 3D), so the
  // entire subtree can be skipped if this layer is fully transparent.
  return !layer->opacity();
}

static inline bool SubtreeShouldBeSkipped(Layer* layer, bool layer_is_drawn) {
  // If the layer transform is not invertible, it should not be drawn.
  if (!layer->transform_is_invertible() && !layer->TransformIsAnimating())
    return true;

  // When we need to do a readback/copy of a layer's output, we can not skip
  // it or any of its ancestors.
  if (layer->draw_properties().layer_or_descendant_has_copy_request)
    return false;

  // If the layer is not drawn, then skip it and its subtree.
  if (!layer_is_drawn)
    return true;

  // If the opacity is being animated then the opacity on the main thread is
  // unreliable (since the impl thread may be using a different opacity), so it
  // should not be trusted.
  // In particular, it should not cause the subtree to be skipped.
  // Similarly, for layers that might animate opacity using an impl-only
  // animation, their subtree should also not be skipped.
  return !layer->opacity() && !layer->OpacityIsAnimating() &&
         !layer->OpacityCanAnimateOnImplThread();
}

static inline void SavePaintPropertiesLayer(LayerImpl* layer) {}

static inline void SavePaintPropertiesLayer(Layer* layer) {
  layer->SavePaintProperties();

  if (layer->mask_layer())
    layer->mask_layer()->SavePaintProperties();
  if (layer->replica_layer() && layer->replica_layer()->mask_layer())
    layer->replica_layer()->mask_layer()->SavePaintProperties();
}

template <typename LayerType>
static bool SubtreeShouldRenderToSeparateSurface(
    LayerType* layer,
    bool axis_aligned_with_respect_to_parent) {
  //
  // A layer and its descendants should render onto a new RenderSurfaceImpl if
  // any of these rules hold:
  //

  // The root layer owns a render surface, but it never acts as a contributing
  // surface to another render target. Compositor features that are applied via
  // a contributing surface can not be applied to the root layer. In order to
  // use these effects, another child of the root would need to be introduced
  // in order to act as a contributing surface to the root layer's surface.
  bool is_root = IsRootLayer(layer);

  // If the layer uses a mask.
  if (layer->mask_layer()) {
    DCHECK(!is_root);
    return true;
  }

  // If the layer has a reflection.
  if (layer->replica_layer()) {
    DCHECK(!is_root);
    return true;
  }

  // If the layer uses a CSS filter.
  if (!layer->filters().IsEmpty() || !layer->background_filters().IsEmpty()) {
    DCHECK(!is_root);
    return true;
  }

  int num_descendants_that_draw_content =
      layer->draw_properties().num_descendants_that_draw_content;

  // If the layer flattens its subtree, but it is treated as a 3D object by its
  // parent (i.e. parent participates in a 3D rendering context).
  if (LayerIsInExisting3DRenderingContext(layer) &&
      layer->should_flatten_transform() &&
      num_descendants_that_draw_content > 0) {
    TRACE_EVENT_INSTANT0(
        "cc",
        "LayerTreeHostCommon::SubtreeShouldRenderToSeparateSurface flattening",
        TRACE_EVENT_SCOPE_THREAD);
    DCHECK(!is_root);
    return true;
  }

  // If the layer has blending.
  // TODO(rosca): this is temporary, until blending is implemented for other
  // types of quads than RenderPassDrawQuad. Layers having descendants that draw
  // content will still create a separate rendering surface.
  if (!layer->uses_default_blend_mode()) {
    TRACE_EVENT_INSTANT0(
        "cc",
        "LayerTreeHostCommon::SubtreeShouldRenderToSeparateSurface blending",
        TRACE_EVENT_SCOPE_THREAD);
    DCHECK(!is_root);
    return true;
  }

  // If the layer clips its descendants but it is not axis-aligned with respect
  // to its parent.
  bool layer_clips_external_content =
      LayerClipsSubtree(layer) || layer->HasDelegatedContent();
  if (layer_clips_external_content && !axis_aligned_with_respect_to_parent &&
      num_descendants_that_draw_content > 0) {
    TRACE_EVENT_INSTANT0(
        "cc",
        "LayerTreeHostCommon::SubtreeShouldRenderToSeparateSurface clipping",
        TRACE_EVENT_SCOPE_THREAD);
    DCHECK(!is_root);
    return true;
  }

  // If the layer has some translucency and does not have a preserves-3d
  // transform style.  This condition only needs a render surface if two or more
  // layers in the subtree overlap. But checking layer overlaps is unnecessarily
  // costly so instead we conservatively create a surface whenever at least two
  // layers draw content for this subtree.
  bool at_least_two_layers_in_subtree_draw_content =
      num_descendants_that_draw_content > 0 &&
      (layer->DrawsContent() || num_descendants_that_draw_content > 1);

  if (layer->opacity() != 1.f && layer->should_flatten_transform() &&
      at_least_two_layers_in_subtree_draw_content) {
    TRACE_EVENT_INSTANT0(
        "cc",
        "LayerTreeHostCommon::SubtreeShouldRenderToSeparateSurface opacity",
        TRACE_EVENT_SCOPE_THREAD);
    DCHECK(!is_root);
    return true;
  }

  // The root layer should always have a render_surface.
  if (is_root)
    return true;

  //
  // These are allowed on the root surface, as they don't require the surface to
  // be used as a contributing surface in order to apply correctly.
  //

  // If the layer has isolation.
  // TODO(rosca): to be optimized - create separate rendering surface only when
  // the blending descendants might have access to the content behind this layer
  // (layer has transparent background or descendants overflow).
  // https://code.google.com/p/chromium/issues/detail?id=301738
  if (layer->is_root_for_isolated_group()) {
    TRACE_EVENT_INSTANT0(
        "cc",
        "LayerTreeHostCommon::SubtreeShouldRenderToSeparateSurface isolation",
        TRACE_EVENT_SCOPE_THREAD);
    return true;
  }

  // If we force it.
  if (layer->force_render_surface())
    return true;

  // If we'll make a copy of the layer's contents.
  if (layer->HasCopyRequest())
    return true;

  return false;
}

// This function returns a translation matrix that can be applied on a vector
// that's in the layer's target surface coordinate, while the position offset is
// specified in some ancestor layer's coordinate.
gfx::Transform ComputeSizeDeltaCompensation(
    LayerImpl* layer,
    LayerImpl* container,
    const gfx::Vector2dF& position_offset) {
  gfx::Transform result_transform;

  // To apply a translate in the container's layer space,
  // the following steps need to be done:
  //     Step 1a. transform from target surface space to the container's target
  //              surface space
  //     Step 1b. transform from container's target surface space to the
  //              container's layer space
  //     Step 2. apply the compensation
  //     Step 3. transform back to target surface space

  gfx::Transform target_surface_space_to_container_layer_space;
  // Calculate step 1a
  LayerImpl* container_target_surface = container->render_target();
  for (LayerImpl* current_target_surface = NextTargetSurface(layer);
      current_target_surface &&
          current_target_surface != container_target_surface;
      current_target_surface = NextTargetSurface(current_target_surface)) {
    // Note: Concat is used here to convert the result coordinate space from
    //       current render surface to the next render surface.
    target_surface_space_to_container_layer_space.ConcatTransform(
        current_target_surface->render_surface()->draw_transform());
  }
  // Calculate step 1b
  gfx::Transform container_layer_space_to_container_target_surface_space =
      container->draw_transform();
  container_layer_space_to_container_target_surface_space.Scale(
      container->contents_scale_x(), container->contents_scale_y());

  gfx::Transform container_target_surface_space_to_container_layer_space;
  if (container_layer_space_to_container_target_surface_space.GetInverse(
      &container_target_surface_space_to_container_layer_space)) {
    // Note: Again, Concat is used to conver the result coordinate space from
    //       the container render surface to the container layer.
    target_surface_space_to_container_layer_space.ConcatTransform(
        container_target_surface_space_to_container_layer_space);
  }

  // Apply step 3
  gfx::Transform container_layer_space_to_target_surface_space;
  if (target_surface_space_to_container_layer_space.GetInverse(
          &container_layer_space_to_target_surface_space)) {
    result_transform.PreconcatTransform(
        container_layer_space_to_target_surface_space);
  } else {
    // TODO(shawnsingh): A non-invertible matrix could still make meaningful
    // projection.  For example ScaleZ(0) is non-invertible but the layer is
    // still visible.
    return gfx::Transform();
  }

  // Apply step 2
  result_transform.Translate(position_offset.x(), position_offset.y());

  // Apply step 1
  result_transform.PreconcatTransform(
      target_surface_space_to_container_layer_space);

  return result_transform;
}

void ApplyPositionAdjustment(
    Layer* layer,
    Layer* container,
    const gfx::Transform& scroll_compensation,
    gfx::Transform* combined_transform) {}
void ApplyPositionAdjustment(
    LayerImpl* layer,
    LayerImpl* container,
    const gfx::Transform& scroll_compensation,
    gfx::Transform* combined_transform) {
  if (!layer->position_constraint().is_fixed_position())
    return;

  // Special case: this layer is a composited fixed-position layer; we need to
  // explicitly compensate for all ancestors' nonzero scroll_deltas to keep
  // this layer fixed correctly.
  // Note carefully: this is Concat, not Preconcat
  // (current_scroll_compensation * combined_transform).
  combined_transform->ConcatTransform(scroll_compensation);

  // For right-edge or bottom-edge anchored fixed position layers,
  // the layer should relocate itself if the container changes its size.
  bool fixed_to_right_edge =
      layer->position_constraint().is_fixed_to_right_edge();
  bool fixed_to_bottom_edge =
      layer->position_constraint().is_fixed_to_bottom_edge();
  gfx::Vector2dF position_offset = container->FixedContainerSizeDelta();
  position_offset.set_x(fixed_to_right_edge ? position_offset.x() : 0);
  position_offset.set_y(fixed_to_bottom_edge ? position_offset.y() : 0);
  if (position_offset.IsZero())
    return;

  // Note: Again, this is Concat. The compensation matrix will be applied on
  //       the vector in target surface space.
  combined_transform->ConcatTransform(
      ComputeSizeDeltaCompensation(layer, container, position_offset));
}

gfx::Transform ComputeScrollCompensationForThisLayer(
    LayerImpl* scrolling_layer,
    const gfx::Transform& parent_matrix,
    const gfx::Vector2dF& scroll_delta) {
  // For every layer that has non-zero scroll_delta, we have to compute a
  // transform that can undo the scroll_delta translation. In particular, we
  // want this matrix to premultiply a fixed-position layer's parent_matrix, so
  // we design this transform in three steps as follows. The steps described
  // here apply from right-to-left, so Step 1 would be the right-most matrix:
  //
  //     Step 1. transform from target surface space to the exact space where
  //           scroll_delta is actually applied.
  //           -- this is inverse of parent_matrix
  //     Step 2. undo the scroll_delta
  //           -- this is just a translation by scroll_delta.
  //     Step 3. transform back to target surface space.
  //           -- this transform is the parent_matrix
  //
  // These steps create a matrix that both start and end in target surface
  // space. So this matrix can pre-multiply any fixed-position layer's
  // draw_transform to undo the scroll_deltas -- as long as that fixed position
  // layer is fixed onto the same render_target as this scrolling_layer.
  //

  gfx::Transform scroll_compensation_for_this_layer = parent_matrix;  // Step 3
  scroll_compensation_for_this_layer.Translate(
      scroll_delta.x(),
      scroll_delta.y());  // Step 2

  gfx::Transform inverse_parent_matrix(gfx::Transform::kSkipInitialization);
  if (!parent_matrix.GetInverse(&inverse_parent_matrix)) {
    // TODO(shawnsingh): Either we need to handle uninvertible transforms
    // here, or DCHECK that the transform is invertible.
  }
  scroll_compensation_for_this_layer.PreconcatTransform(
      inverse_parent_matrix);  // Step 1
  return scroll_compensation_for_this_layer;
}

gfx::Transform ComputeScrollCompensationMatrixForChildren(
    Layer* current_layer,
    const gfx::Transform& current_parent_matrix,
    const gfx::Transform& current_scroll_compensation,
    const gfx::Vector2dF& scroll_delta) {
  // The main thread (i.e. Layer) does not need to worry about scroll
  // compensation.  So we can just return an identity matrix here.
  return gfx::Transform();
}

gfx::Transform ComputeScrollCompensationMatrixForChildren(
    LayerImpl* layer,
    const gfx::Transform& parent_matrix,
    const gfx::Transform& current_scroll_compensation_matrix,
    const gfx::Vector2dF& scroll_delta) {
  // "Total scroll compensation" is the transform needed to cancel out all
  // scroll_delta translations that occurred since the nearest container layer,
  // even if there are render_surfaces in-between.
  //
  // There are some edge cases to be aware of, that are not explicit in the
  // code:
  //  - A layer that is both a fixed-position and container should not be its
  //  own container, instead, that means it is fixed to an ancestor, and is a
  //  container for any fixed-position descendants.
  //  - A layer that is a fixed-position container and has a render_surface
  //  should behave the same as a container without a render_surface, the
  //  render_surface is irrelevant in that case.
  //  - A layer that does not have an explicit container is simply fixed to the
  //  viewport.  (i.e. the root render_surface.)
  //  - If the fixed-position layer has its own render_surface, then the
  //  render_surface is the one who gets fixed.
  //
  // This function needs to be called AFTER layers create their own
  // render_surfaces.
  //

  // Scroll compensation restarts from identity under two possible conditions:
  //  - the current layer is a container for fixed-position descendants
  //  - the current layer is fixed-position itself, so any fixed-position
  //    descendants are positioned with respect to this layer. Thus, any
  //    fixed position descendants only need to compensate for scrollDeltas
  //    that occur below this layer.
  bool current_layer_resets_scroll_compensation_for_descendants =
      layer->IsContainerForFixedPositionLayers() ||
      layer->position_constraint().is_fixed_position();

  // Avoid the overheads (including stack allocation and matrix
  // initialization/copy) if we know that the scroll compensation doesn't need
  // to be reset or adjusted.
  if (!current_layer_resets_scroll_compensation_for_descendants &&
      scroll_delta.IsZero() && !layer->render_surface())
    return current_scroll_compensation_matrix;

  // Start as identity matrix.
  gfx::Transform next_scroll_compensation_matrix;

  // If this layer does not reset scroll compensation, then it inherits the
  // existing scroll compensations.
  if (!current_layer_resets_scroll_compensation_for_descendants)
    next_scroll_compensation_matrix = current_scroll_compensation_matrix;

  // If the current layer has a non-zero scroll_delta, then we should compute
  // its local scroll compensation and accumulate it to the
  // next_scroll_compensation_matrix.
  if (!scroll_delta.IsZero()) {
    gfx::Transform scroll_compensation_for_this_layer =
        ComputeScrollCompensationForThisLayer(
            layer, parent_matrix, scroll_delta);
    next_scroll_compensation_matrix.PreconcatTransform(
        scroll_compensation_for_this_layer);
  }

  // If the layer created its own render_surface, we have to adjust
  // next_scroll_compensation_matrix.  The adjustment allows us to continue
  // using the scroll compensation on the next surface.
  //  Step 1 (right-most in the math): transform from the new surface to the
  //  original ancestor surface
  //  Step 2: apply the scroll compensation
  //  Step 3: transform back to the new surface.
  if (layer->render_surface() &&
      !next_scroll_compensation_matrix.IsIdentity()) {
    gfx::Transform inverse_surface_draw_transform(
        gfx::Transform::kSkipInitialization);
    if (!layer->render_surface()->draw_transform().GetInverse(
            &inverse_surface_draw_transform)) {
      // TODO(shawnsingh): Either we need to handle uninvertible transforms
      // here, or DCHECK that the transform is invertible.
    }
    next_scroll_compensation_matrix =
        inverse_surface_draw_transform * next_scroll_compensation_matrix *
        layer->render_surface()->draw_transform();
  }

  return next_scroll_compensation_matrix;
}

template <typename LayerType>
static inline void CalculateContentsScale(
    LayerType* layer,
    float contents_scale,
    float device_scale_factor,
    float page_scale_factor,
    float maximum_animation_contents_scale,
    bool animating_transform_to_screen) {
  layer->CalculateContentsScale(contents_scale,
                                device_scale_factor,
                                page_scale_factor,
                                maximum_animation_contents_scale,
                                animating_transform_to_screen,
                                &layer->draw_properties().contents_scale_x,
                                &layer->draw_properties().contents_scale_y,
                                &layer->draw_properties().content_bounds);

  LayerType* mask_layer = layer->mask_layer();
  if (mask_layer) {
    mask_layer->CalculateContentsScale(
        contents_scale,
        device_scale_factor,
        page_scale_factor,
        maximum_animation_contents_scale,
        animating_transform_to_screen,
        &mask_layer->draw_properties().contents_scale_x,
        &mask_layer->draw_properties().contents_scale_y,
        &mask_layer->draw_properties().content_bounds);
  }

  LayerType* replica_mask_layer =
      layer->replica_layer() ? layer->replica_layer()->mask_layer() : NULL;
  if (replica_mask_layer) {
    replica_mask_layer->CalculateContentsScale(
        contents_scale,
        device_scale_factor,
        page_scale_factor,
        maximum_animation_contents_scale,
        animating_transform_to_screen,
        &replica_mask_layer->draw_properties().contents_scale_x,
        &replica_mask_layer->draw_properties().contents_scale_y,
        &replica_mask_layer->draw_properties().content_bounds);
  }
}

static inline void UpdateLayerContentsScale(
    LayerImpl* layer,
    bool can_adjust_raster_scale,
    float ideal_contents_scale,
    float device_scale_factor,
    float page_scale_factor,
    float maximum_animation_contents_scale,
    bool animating_transform_to_screen) {
  CalculateContentsScale(layer,
                         ideal_contents_scale,
                         device_scale_factor,
                         page_scale_factor,
                         maximum_animation_contents_scale,
                         animating_transform_to_screen);
}

static inline void UpdateLayerContentsScale(
    Layer* layer,
    bool can_adjust_raster_scale,
    float ideal_contents_scale,
    float device_scale_factor,
    float page_scale_factor,
    float maximum_animation_contents_scale,
    bool animating_transform_to_screen) {
  if (can_adjust_raster_scale) {
    float ideal_raster_scale =
        ideal_contents_scale / (device_scale_factor * page_scale_factor);

    bool need_to_set_raster_scale = layer->raster_scale_is_unknown();

    // If we've previously saved a raster_scale but the ideal changes, things
    // are unpredictable and we should just use 1.
    if (!need_to_set_raster_scale && layer->raster_scale() != 1.f &&
        ideal_raster_scale != layer->raster_scale()) {
      ideal_raster_scale = 1.f;
      need_to_set_raster_scale = true;
    }

    if (need_to_set_raster_scale) {
      bool use_and_save_ideal_scale =
          ideal_raster_scale >= 1.f && !animating_transform_to_screen;
      if (use_and_save_ideal_scale)
        layer->set_raster_scale(ideal_raster_scale);
    }
  }

  float raster_scale = 1.f;
  if (!layer->raster_scale_is_unknown())
    raster_scale = layer->raster_scale();

  gfx::Size old_content_bounds = layer->content_bounds();
  float old_contents_scale_x = layer->contents_scale_x();
  float old_contents_scale_y = layer->contents_scale_y();

  float contents_scale = raster_scale * device_scale_factor * page_scale_factor;
  CalculateContentsScale(layer,
                         contents_scale,
                         device_scale_factor,
                         page_scale_factor,
                         maximum_animation_contents_scale,
                         animating_transform_to_screen);

  if (layer->content_bounds() != old_content_bounds ||
      layer->contents_scale_x() != old_contents_scale_x ||
      layer->contents_scale_y() != old_contents_scale_y)
    layer->SetNeedsPushProperties();
}

static inline void CalculateAnimationContentsScale(
    Layer* layer,
    bool ancestor_is_animating_scale,
    float ancestor_maximum_animation_contents_scale,
    const gfx::Transform& parent_transform,
    const gfx::Transform& combined_transform,
    bool* combined_is_animating_scale,
    float* combined_maximum_animation_contents_scale) {
  *combined_is_animating_scale = false;
  *combined_maximum_animation_contents_scale = 0.f;
}

static inline void CalculateAnimationContentsScale(
    LayerImpl* layer,
    bool ancestor_is_animating_scale,
    float ancestor_maximum_animation_contents_scale,
    const gfx::Transform& ancestor_transform,
    const gfx::Transform& combined_transform,
    bool* combined_is_animating_scale,
    float* combined_maximum_animation_contents_scale) {
  if (ancestor_is_animating_scale &&
      ancestor_maximum_animation_contents_scale == 0.f) {
    // We've already failed to compute a maximum animated scale at an
    // ancestor, so we'll continue to fail.
    *combined_maximum_animation_contents_scale = 0.f;
    *combined_is_animating_scale = true;
    return;
  }

  if (!combined_transform.IsScaleOrTranslation()) {
    // Computing maximum animated scale in the presence of
    // non-scale/translation transforms isn't supported.
    *combined_maximum_animation_contents_scale = 0.f;
    *combined_is_animating_scale = true;
    return;
  }

  // We currently only support computing maximum scale for combinations of
  // scales and translations. We treat all non-translations as potentially
  // affecting scale. Animations that include non-translation/scale components
  // will cause the computation of MaximumScale below to fail.
  bool layer_is_animating_scale =
      !layer->layer_animation_controller()->HasOnlyTranslationTransforms();

  if (!layer_is_animating_scale && !ancestor_is_animating_scale) {
    *combined_maximum_animation_contents_scale = 0.f;
    *combined_is_animating_scale = false;
    return;
  }

  // We don't attempt to accumulate animation scale from multiple nodes,
  // because of the risk of significant overestimation. For example, one node
  // may be increasing scale from 1 to 10 at the same time as a descendant is
  // decreasing scale from 10 to 1. Naively combining these scales would produce
  // a scale of 100.
  if (layer_is_animating_scale && ancestor_is_animating_scale) {
    *combined_maximum_animation_contents_scale = 0.f;
    *combined_is_animating_scale = true;
    return;
  }

  // At this point, we know either the layer or an ancestor, but not both,
  // is animating scale.
  *combined_is_animating_scale = true;
  if (!layer_is_animating_scale) {
    gfx::Vector2dF layer_transform_scales =
        MathUtil::ComputeTransform2dScaleComponents(layer->transform(), 0.f);
    *combined_maximum_animation_contents_scale =
        ancestor_maximum_animation_contents_scale *
        std::max(layer_transform_scales.x(), layer_transform_scales.y());
    return;
  }

  float layer_maximum_animated_scale = 0.f;
  if (!layer->layer_animation_controller()->MaximumScale(
          &layer_maximum_animated_scale)) {
    *combined_maximum_animation_contents_scale = 0.f;
    return;
  }
  gfx::Vector2dF ancestor_transform_scales =
      MathUtil::ComputeTransform2dScaleComponents(ancestor_transform, 0.f);
  *combined_maximum_animation_contents_scale =
      layer_maximum_animated_scale *
      std::max(ancestor_transform_scales.x(), ancestor_transform_scales.y());
}

template <typename LayerType>
static inline typename LayerType::RenderSurfaceType* CreateOrReuseRenderSurface(
    LayerType* layer) {
  if (!layer->render_surface()) {
    layer->CreateRenderSurface();
    return layer->render_surface();
  }

  layer->render_surface()->ClearLayerLists();
  return layer->render_surface();
}

template <typename LayerTypePtr>
static inline void MarkLayerWithRenderSurfaceLayerListId(
    LayerTypePtr layer,
    int current_render_surface_layer_list_id) {
  layer->draw_properties().last_drawn_render_surface_layer_list_id =
      current_render_surface_layer_list_id;
}

template <typename LayerTypePtr>
static inline void MarkMasksWithRenderSurfaceLayerListId(
    LayerTypePtr layer,
    int current_render_surface_layer_list_id) {
  if (layer->mask_layer()) {
    MarkLayerWithRenderSurfaceLayerListId(layer->mask_layer(),
                                          current_render_surface_layer_list_id);
  }
  if (layer->replica_layer() && layer->replica_layer()->mask_layer()) {
    MarkLayerWithRenderSurfaceLayerListId(layer->replica_layer()->mask_layer(),
                                          current_render_surface_layer_list_id);
  }
}

template <typename LayerListType>
static inline void MarkLayerListWithRenderSurfaceLayerListId(
    LayerListType* layer_list,
    int current_render_surface_layer_list_id) {
  for (typename LayerListType::iterator it = layer_list->begin();
       it != layer_list->end();
       ++it) {
    MarkLayerWithRenderSurfaceLayerListId(*it,
                                          current_render_surface_layer_list_id);
    MarkMasksWithRenderSurfaceLayerListId(*it,
                                          current_render_surface_layer_list_id);
  }
}

template <typename LayerType>
static inline void RemoveSurfaceForEarlyExit(
    LayerType* layer_to_remove,
    typename LayerType::RenderSurfaceListType* render_surface_layer_list) {
  DCHECK(layer_to_remove->render_surface());
  // Technically, we know that the layer we want to remove should be
  // at the back of the render_surface_layer_list. However, we have had
  // bugs before that added unnecessary layers here
  // (https://bugs.webkit.org/show_bug.cgi?id=74147), but that causes
  // things to crash. So here we proactively remove any additional
  // layers from the end of the list.
  while (render_surface_layer_list->back() != layer_to_remove) {
    MarkLayerListWithRenderSurfaceLayerListId(
        &render_surface_layer_list->back()->render_surface()->layer_list(), 0);
    MarkLayerWithRenderSurfaceLayerListId(render_surface_layer_list->back(), 0);

    render_surface_layer_list->back()->ClearRenderSurfaceLayerList();
    render_surface_layer_list->pop_back();
  }
  DCHECK_EQ(render_surface_layer_list->back(), layer_to_remove);
  MarkLayerListWithRenderSurfaceLayerListId(
      &layer_to_remove->render_surface()->layer_list(), 0);
  MarkLayerWithRenderSurfaceLayerListId(layer_to_remove, 0);
  render_surface_layer_list->pop_back();
  layer_to_remove->ClearRenderSurfaceLayerList();
}

struct PreCalculateMetaInformationRecursiveData {
  bool layer_or_descendant_has_copy_request;
  int num_unclipped_descendants;

  PreCalculateMetaInformationRecursiveData()
      : layer_or_descendant_has_copy_request(false),
        num_unclipped_descendants(0) {}

  void Merge(const PreCalculateMetaInformationRecursiveData& data) {
    layer_or_descendant_has_copy_request |=
        data.layer_or_descendant_has_copy_request;
    num_unclipped_descendants +=
        data.num_unclipped_descendants;
  }
};

// Recursively walks the layer tree to compute any information that is needed
// before doing the main recursion.
template <typename LayerType>
static void PreCalculateMetaInformation(
    LayerType* layer,
    PreCalculateMetaInformationRecursiveData* recursive_data) {
  bool has_delegated_content = layer->HasDelegatedContent();
  int num_descendants_that_draw_content = 0;

  layer->draw_properties().sorted_for_recursion = false;
  layer->draw_properties().has_child_with_a_scroll_parent = false;

  if (!HasInvertibleOrAnimatedTransform(layer)) {
    // Layers with singular transforms should not be drawn, the whole subtree
    // can be skipped.
    return;
  }

  if (has_delegated_content) {
    // Layers with delegated content need to be treated as if they have as
    // many children as the number of layers they own delegated quads for.
    // Since we don't know this number right now, we choose one that acts like
    // infinity for our purposes.
    num_descendants_that_draw_content = 1000;
  }

  if (layer->clip_parent())
    recursive_data->num_unclipped_descendants++;

  for (size_t i = 0; i < layer->children().size(); ++i) {
    LayerType* child_layer =
        LayerTreeHostCommon::get_layer_as_raw_ptr(layer->children(), i);

    PreCalculateMetaInformationRecursiveData data_for_child;
    PreCalculateMetaInformation(child_layer, &data_for_child);

    num_descendants_that_draw_content += child_layer->DrawsContent() ? 1 : 0;
    num_descendants_that_draw_content +=
        child_layer->draw_properties().num_descendants_that_draw_content;

    if (child_layer->scroll_parent())
      layer->draw_properties().has_child_with_a_scroll_parent = true;
    recursive_data->Merge(data_for_child);
  }

  if (layer->clip_children()) {
    int num_clip_children = layer->clip_children()->size();
    DCHECK_GE(recursive_data->num_unclipped_descendants, num_clip_children);
    recursive_data->num_unclipped_descendants -= num_clip_children;
  }

  if (layer->HasCopyRequest())
    recursive_data->layer_or_descendant_has_copy_request = true;

  layer->draw_properties().num_descendants_that_draw_content =
      num_descendants_that_draw_content;
  layer->draw_properties().num_unclipped_descendants =
      recursive_data->num_unclipped_descendants;
  layer->draw_properties().layer_or_descendant_has_copy_request =
      recursive_data->layer_or_descendant_has_copy_request;
}

static void RoundTranslationComponents(gfx::Transform* transform) {
  transform->matrix().set(0, 3, MathUtil::Round(transform->matrix().get(0, 3)));
  transform->matrix().set(1, 3, MathUtil::Round(transform->matrix().get(1, 3)));
}

template <typename LayerType>
struct SubtreeGlobals {
  LayerSorter* layer_sorter;
  int max_texture_size;
  float device_scale_factor;
  float page_scale_factor;
  const LayerType* page_scale_application_layer;
  bool can_adjust_raster_scales;
  bool can_render_to_separate_surface;
};

template<typename LayerType>
struct DataForRecursion {
  // The accumulated sequence of transforms a layer will use to determine its
  // own draw transform.
  gfx::Transform parent_matrix;

  // The accumulated sequence of transforms a layer will use to determine its
  // own screen-space transform.
  gfx::Transform full_hierarchy_matrix;

  // The transform that removes all scrolling that may have occurred between a
  // fixed-position layer and its container, so that the layer actually does
  // remain fixed.
  gfx::Transform scroll_compensation_matrix;

  // The ancestor that would be the container for any fixed-position / sticky
  // layers.
  LayerType* fixed_container;

  // This is the normal clip rect that is propagated from parent to child.
  gfx::Rect clip_rect_in_target_space;

  // When the layer's children want to compute their visible content rect, they
  // want to know what their target surface's clip rect will be. BUT - they
  // want to know this clip rect represented in their own target space. This
  // requires inverse-projecting the surface's clip rect from the surface's
  // render target space down to the surface's own space. Instead of computing
  // this value redundantly for each child layer, it is computed only once
  // while dealing with the parent layer, and then this precomputed value is
  // passed down the recursion to the children that actually use it.
  gfx::Rect clip_rect_of_target_surface_in_target_space;

  // The maximum amount by which this layer will be scaled during the lifetime
  // of currently running animations.
  float maximum_animation_contents_scale;

  bool ancestor_is_animating_scale;
  bool ancestor_clips_subtree;
  typename LayerType::RenderSurfaceType*
      nearest_occlusion_immune_ancestor_surface;
  bool in_subtree_of_page_scale_application_layer;
  bool subtree_can_use_lcd_text;
  bool subtree_is_visible_from_ancestor;
};

template <typename LayerType>
static LayerType* GetChildContainingLayer(const LayerType& parent,
                                          LayerType* layer) {
  for (LayerType* ancestor = layer; ancestor; ancestor = ancestor->parent()) {
    if (ancestor->parent() == &parent)
      return ancestor;
  }
  NOTREACHED();
  return 0;
}

template <typename LayerType>
static void AddScrollParentChain(std::vector<LayerType*>* out,
                                 const LayerType& parent,
                                 LayerType* layer) {
  // At a high level, this function walks up the chain of scroll parents
  // recursively, and once we reach the end of the chain, we add the child
  // of |parent| containing each scroll ancestor as we unwind. The result is
  // an ordering of parent's children that ensures that scroll parents are
  // visited before their descendants.
  // Take for example this layer tree:
  //
  // + stacking_context
  //   + scroll_child (1)
  //   + scroll_parent_graphics_layer (*)
  //   | + scroll_parent_scrolling_layer
  //   |   + scroll_parent_scrolling_content_layer (2)
  //   + scroll_grandparent_graphics_layer (**)
  //     + scroll_grandparent_scrolling_layer
  //       + scroll_grandparent_scrolling_content_layer (3)
  //
  // The scroll child is (1), its scroll parent is (2) and its scroll
  // grandparent is (3). Note, this doesn't mean that (2)'s scroll parent is
  // (3), it means that (*)'s scroll parent is (3). We don't want our list to
  // look like [ (3), (2), (1) ], even though that does have the ancestor chain
  // in the right order. Instead, we want [ (**), (*), (1) ]. That is, only want
  // (1)'s siblings in the list, but we want them to appear in such an order
  // that the scroll ancestors get visited in the correct order.
  //
  // So our first task at this step of the recursion is to determine the layer
  // that we will potentionally add to the list. That is, the child of parent
  // containing |layer|.
  LayerType* child = GetChildContainingLayer(parent, layer);
  if (child->draw_properties().sorted_for_recursion)
    return;

  if (LayerType* scroll_parent = child->scroll_parent())
    AddScrollParentChain(out, parent, scroll_parent);

  out->push_back(child);
  child->draw_properties().sorted_for_recursion = true;
}

template <typename LayerType>
static bool SortChildrenForRecursion(std::vector<LayerType*>* out,
                                     const LayerType& parent) {
  out->reserve(parent.children().size());
  bool order_changed = false;
  for (size_t i = 0; i < parent.children().size(); ++i) {
    LayerType* current =
        LayerTreeHostCommon::get_layer_as_raw_ptr(parent.children(), i);

    if (current->draw_properties().sorted_for_recursion) {
      order_changed = true;
      continue;
    }

    AddScrollParentChain(out, parent, current);
  }

  DCHECK_EQ(parent.children().size(), out->size());
  return order_changed;
}

template <typename LayerType>
static void GetNewDescendantsStartIndexAndCount(LayerType* layer,
                                                size_t* start_index,
                                                size_t* count) {
  *start_index = layer->draw_properties().index_of_first_descendants_addition;
  *count = layer->draw_properties().num_descendants_added;
}

template <typename LayerType>
static void GetNewRenderSurfacesStartIndexAndCount(LayerType* layer,
                                                   size_t* start_index,
                                                   size_t* count) {
  *start_index = layer->draw_properties()
                     .index_of_first_render_surface_layer_list_addition;
  *count = layer->draw_properties().num_render_surfaces_added;
}

// We need to extract a list from the the two flavors of RenderSurfaceListType
// for use in the sorting function below.
static LayerList* GetLayerListForSorting(RenderSurfaceLayerList* rsll) {
  return &rsll->AsLayerList();
}

static LayerImplList* GetLayerListForSorting(LayerImplList* layer_list) {
  return layer_list;
}

template <typename LayerType, typename GetIndexAndCountType>
static void SortLayerListContributions(
    const LayerType& parent,
    typename LayerType::LayerListType* unsorted,
    size_t start_index_for_all_contributions,
    GetIndexAndCountType get_index_and_count) {
  typename LayerType::LayerListType buffer;
  for (size_t i = 0; i < parent.children().size(); ++i) {
    LayerType* child =
        LayerTreeHostCommon::get_layer_as_raw_ptr(parent.children(), i);

    size_t start_index = 0;
    size_t count = 0;
    get_index_and_count(child, &start_index, &count);
    for (size_t j = start_index; j < start_index + count; ++j)
      buffer.push_back(unsorted->at(j));
  }

  DCHECK_EQ(buffer.size(),
            unsorted->size() - start_index_for_all_contributions);

  for (size_t i = 0; i < buffer.size(); ++i)
    (*unsorted)[i + start_index_for_all_contributions] = buffer[i];
}

// Recursively walks the layer tree starting at the given node and computes all
// the necessary transformations, clip rects, render surfaces, etc.
template <typename LayerType>
static void CalculateDrawPropertiesInternal(
    LayerType* layer,
    const SubtreeGlobals<LayerType>& globals,
    const DataForRecursion<LayerType>& data_from_ancestor,
    typename LayerType::RenderSurfaceListType* render_surface_layer_list,
    typename LayerType::LayerListType* layer_list,
    std::vector<AccumulatedSurfaceState<LayerType> >* accumulated_surface_state,
    int current_render_surface_layer_list_id) {
  // This function computes the new matrix transformations recursively for this
  // layer and all its descendants. It also computes the appropriate render
  // surfaces.
  // Some important points to remember:
  //
  // 0. Here, transforms are notated in Matrix x Vector order, and in words we
  // describe what the transform does from left to right.
  //
  // 1. In our terminology, the "layer origin" refers to the top-left corner of
  // a layer, and the positive Y-axis points downwards. This interpretation is
  // valid because the orthographic projection applied at draw time flips the Y
  // axis appropriately.
  //
  // 2. The anchor point, when given as a PointF object, is specified in "unit
  // layer space", where the bounds of the layer map to [0, 1]. However, as a
  // Transform object, the transform to the anchor point is specified in "layer
  // space", where the bounds of the layer map to [bounds.width(),
  // bounds.height()].
  //
  // 3. Definition of various transforms used:
  //        M[parent] is the parent matrix, with respect to the nearest render
  //        surface, passed down recursively.
  //
  //        M[root] is the full hierarchy, with respect to the root, passed down
  //        recursively.
  //
  //        Tr[origin] is the translation matrix from the parent's origin to
  //        this layer's origin.
  //
  //        Tr[origin2anchor] is the translation from the layer's origin to its
  //        anchor point
  //
  //        Tr[origin2center] is the translation from the layer's origin to its
  //        center
  //
  //        M[layer] is the layer's matrix (applied at the anchor point)
  //
  //        S[layer2content] is the ratio of a layer's content_bounds() to its
  //        Bounds().
  //
  //    Some composite transforms can help in understanding the sequence of
  //    transforms:
  //        composite_layer_transform = Tr[origin2anchor] * M[layer] *
  //        Tr[origin2anchor].inverse()
  //
  // 4. When a layer (or render surface) is drawn, it is drawn into a "target
  // render surface". Therefore the draw transform does not necessarily
  // transform from screen space to local layer space. Instead, the draw
  // transform is the transform between the "target render surface space" and
  // local layer space. Note that render surfaces, except for the root, also
  // draw themselves into a different target render surface, and so their draw
  // transform and origin transforms are also described with respect to the
  // target.
  //
  // Using these definitions, then:
  //
  // The draw transform for the layer is:
  //        M[draw] = M[parent] * Tr[origin] * composite_layer_transform *
  //            S[layer2content] = M[parent] * Tr[layer->position() + anchor] *
  //            M[layer] * Tr[anchor2origin] * S[layer2content]
  //
  //        Interpreting the math left-to-right, this transforms from the
  //        layer's render surface to the origin of the layer in content space.
  //
  // The screen space transform is:
  //        M[screenspace] = M[root] * Tr[origin] * composite_layer_transform *
  //            S[layer2content]
  //                       = M[root] * Tr[layer->position() + anchor] * M[layer]
  //                           * Tr[anchor2origin] * S[layer2content]
  //
  //        Interpreting the math left-to-right, this transforms from the root
  //        render surface's content space to the origin of the layer in content
  //        space.
  //
  // The transform hierarchy that is passed on to children (i.e. the child's
  // parent_matrix) is:
  //        M[parent]_for_child = M[parent] * Tr[origin] *
  //            composite_layer_transform
  //                            = M[parent] * Tr[layer->position() + anchor] *
  //                              M[layer] * Tr[anchor2origin]
  //
  //        and a similar matrix for the full hierarchy with respect to the
  //        root.
  //
  // Finally, note that the final matrix used by the shader for the layer is P *
  // M[draw] * S . This final product is computed in drawTexturedQuad(), where:
  //        P is the projection matrix
  //        S is the scale adjustment (to scale up a canonical quad to the
  //            layer's size)
  //
  // When a render surface has a replica layer, that layer's transform is used
  // to draw a second copy of the surface.  gfx::Transforms named here are
  // relative to the surface, unless they specify they are relative to the
  // replica layer.
  //
  // We will denote a scale by device scale S[deviceScale]
  //
  // The render surface draw transform to its target surface origin is:
  //        M[surfaceDraw] = M[owningLayer->Draw]
  //
  // The render surface origin transform to its the root (screen space) origin
  // is:
  //        M[surface2root] =  M[owningLayer->screenspace] *
  //            S[deviceScale].inverse()
  //
  // The replica draw transform to its target surface origin is:
  //        M[replicaDraw] = S[deviceScale] * M[surfaceDraw] *
  //            Tr[replica->position() + replica->anchor()] * Tr[replica] *
  //            Tr[origin2anchor].inverse() * S[contents_scale].inverse()
  //
  // The replica draw transform to the root (screen space) origin is:
  //        M[replica2root] = M[surface2root] * Tr[replica->position()] *
  //            Tr[replica] * Tr[origin2anchor].inverse()
  //

  // It makes no sense to have a non-unit page_scale_factor without specifying
  // which layer roots the subtree the scale is applied to.
  DCHECK(globals.page_scale_application_layer ||
         (globals.page_scale_factor == 1.f));

  DataForRecursion<LayerType> data_for_children;
  typename LayerType::RenderSurfaceType*
      nearest_occlusion_immune_ancestor_surface =
          data_from_ancestor.nearest_occlusion_immune_ancestor_surface;
  data_for_children.in_subtree_of_page_scale_application_layer =
      data_from_ancestor.in_subtree_of_page_scale_application_layer;
  data_for_children.subtree_can_use_lcd_text =
      data_from_ancestor.subtree_can_use_lcd_text;

  // Layers that are marked as hidden will hide themselves and their subtree.
  // Exception: Layers with copy requests, whether hidden or not, must be drawn
  // anyway.  In this case, we will inform their subtree they are visible to get
  // the right results.
  const bool layer_is_visible =
      data_from_ancestor.subtree_is_visible_from_ancestor &&
      !layer->hide_layer_and_subtree();
  const bool layer_is_drawn = layer_is_visible || layer->HasCopyRequest();

  // The root layer cannot skip CalcDrawProperties.
  if (!IsRootLayer(layer) && SubtreeShouldBeSkipped(layer, layer_is_drawn)) {
    if (layer->render_surface())
      layer->ClearRenderSurfaceLayerList();
    return;
  }

  // We need to circumvent the normal recursive flow of information for clip
  // children (they don't inherit their direct ancestor's clip information).
  // This is unfortunate, and would be unnecessary if we were to formally
  // separate the clipping hierarchy from the layer hierarchy.
  bool ancestor_clips_subtree = data_from_ancestor.ancestor_clips_subtree;
  gfx::Rect ancestor_clip_rect_in_target_space =
      data_from_ancestor.clip_rect_in_target_space;

  // Update our clipping state. If we have a clip parent we will need to pull
  // from the clip state cache rather than using the clip state passed from our
  // immediate ancestor.
  UpdateClipRectsForClipChild<LayerType>(
      layer, &ancestor_clip_rect_in_target_space, &ancestor_clips_subtree);

  // As this function proceeds, these are the properties for the current
  // layer that actually get computed. To avoid unnecessary copies
  // (particularly for matrices), we do computations directly on these values
  // when possible.
  DrawProperties<LayerType>& layer_draw_properties = layer->draw_properties();

  gfx::Rect clip_rect_in_target_space;
  bool layer_or_ancestor_clips_descendants = false;

  // This value is cached on the stack so that we don't have to inverse-project
  // the surface's clip rect redundantly for every layer. This value is the
  // same as the target surface's clip rect, except that instead of being
  // described in the target surface's target's space, it is described in the
  // current render target's space.
  gfx::Rect clip_rect_of_target_surface_in_target_space;

  float accumulated_draw_opacity = layer->opacity();
  bool animating_opacity_to_target = layer->OpacityIsAnimating();
  bool animating_opacity_to_screen = animating_opacity_to_target;
  if (layer->parent()) {
    accumulated_draw_opacity *= layer->parent()->draw_opacity();
    animating_opacity_to_target |= layer->parent()->draw_opacity_is_animating();
    animating_opacity_to_screen |=
        layer->parent()->screen_space_opacity_is_animating();
  }

  bool animating_transform_to_target = layer->TransformIsAnimating();
  bool animating_transform_to_screen = animating_transform_to_target;
  if (layer->parent()) {
    animating_transform_to_target |=
        layer->parent()->draw_transform_is_animating();
    animating_transform_to_screen |=
        layer->parent()->screen_space_transform_is_animating();
  }
  gfx::Point3F transform_origin = layer->transform_origin();
  gfx::Vector2dF scroll_offset = GetEffectiveTotalScrollOffset(layer);
  gfx::PointF position = layer->position() - scroll_offset;
  gfx::Transform combined_transform = data_from_ancestor.parent_matrix;
  if (!layer->transform().IsIdentity()) {
    // LT = Tr[origin] * Tr[origin2transformOrigin]
    combined_transform.Translate3d(position.x() + transform_origin.x(),
                                   position.y() + transform_origin.y(),
                                   transform_origin.z());
    // LT = Tr[origin] * Tr[origin2origin] * M[layer]
    combined_transform.PreconcatTransform(layer->transform());
    // LT = Tr[origin] * Tr[origin2origin] * M[layer] *
    // Tr[transformOrigin2origin]
    combined_transform.Translate3d(
        -transform_origin.x(), -transform_origin.y(), -transform_origin.z());
  } else {
    combined_transform.Translate(position.x(), position.y());
  }

  gfx::Vector2dF effective_scroll_delta = GetEffectiveScrollDelta(layer);
  if (!animating_transform_to_target && layer->scrollable() &&
      combined_transform.IsScaleOrTranslation()) {
    // Align the scrollable layer's position to screen space pixels to avoid
    // blurriness.  To avoid side-effects, do this only if the transform is
    // simple.
    gfx::Vector2dF previous_translation = combined_transform.To2dTranslation();
    RoundTranslationComponents(&combined_transform);
    gfx::Vector2dF current_translation = combined_transform.To2dTranslation();

    // This rounding changes the scroll delta, and so must be included
    // in the scroll compensation matrix.  The scaling converts from physical
    // coordinates to the scroll delta's CSS coordinates (using the parent
    // matrix instead of combined transform since scrolling is applied before
    // the layer's transform).  For example, if we have a total scale factor of
    // 3.0, then 1 physical pixel is only 1/3 of a CSS pixel.
    gfx::Vector2dF parent_scales = MathUtil::ComputeTransform2dScaleComponents(
        data_from_ancestor.parent_matrix, 1.f);
    effective_scroll_delta -=
        gfx::ScaleVector2d(current_translation - previous_translation,
                           1.f / parent_scales.x(),
                           1.f / parent_scales.y());
  }

  // Apply adjustment from position constraints.
  ApplyPositionAdjustment(layer, data_from_ancestor.fixed_container,
      data_from_ancestor.scroll_compensation_matrix, &combined_transform);

  bool combined_is_animating_scale = false;
  float combined_maximum_animation_contents_scale = 0.f;
  if (globals.can_adjust_raster_scales) {
    CalculateAnimationContentsScale(
        layer,
        data_from_ancestor.ancestor_is_animating_scale,
        data_from_ancestor.maximum_animation_contents_scale,
        data_from_ancestor.parent_matrix,
        combined_transform,
        &combined_is_animating_scale,
        &combined_maximum_animation_contents_scale);
  }
  data_for_children.ancestor_is_animating_scale = combined_is_animating_scale;
  data_for_children.maximum_animation_contents_scale =
      combined_maximum_animation_contents_scale;

  // Compute the 2d scale components of the transform hierarchy up to the target
  // surface. From there, we can decide on a contents scale for the layer.
  float layer_scale_factors = globals.device_scale_factor;
  if (data_from_ancestor.in_subtree_of_page_scale_application_layer)
    layer_scale_factors *= globals.page_scale_factor;
  gfx::Vector2dF combined_transform_scales =
      MathUtil::ComputeTransform2dScaleComponents(
          combined_transform,
          layer_scale_factors);

  float ideal_contents_scale =
      globals.can_adjust_raster_scales
      ? std::max(combined_transform_scales.x(),
                 combined_transform_scales.y())
      : layer_scale_factors;
  UpdateLayerContentsScale(
      layer,
      globals.can_adjust_raster_scales,
      ideal_contents_scale,
      globals.device_scale_factor,
      data_from_ancestor.in_subtree_of_page_scale_application_layer
          ? globals.page_scale_factor
          : 1.f,
      combined_maximum_animation_contents_scale,
      animating_transform_to_screen);

  // The draw_transform that gets computed below is effectively the layer's
  // draw_transform, unless the layer itself creates a render_surface. In that
  // case, the render_surface re-parents the transforms.
  layer_draw_properties.target_space_transform = combined_transform;
  // M[draw] = M[parent] * LT * S[layer2content]
  layer_draw_properties.target_space_transform.Scale(
      SK_MScalar1 / layer->contents_scale_x(),
      SK_MScalar1 / layer->contents_scale_y());

  // The layer's screen_space_transform represents the transform between root
  // layer's "screen space" and local content space.
  layer_draw_properties.screen_space_transform =
      data_from_ancestor.full_hierarchy_matrix;
  if (layer->should_flatten_transform())
    layer_draw_properties.screen_space_transform.FlattenTo2d();
  layer_draw_properties.screen_space_transform.PreconcatTransform
      (layer_draw_properties.target_space_transform);

  // Adjusting text AA method during animation may cause repaints, which in-turn
  // causes jank.
  bool adjust_text_aa =
      !animating_opacity_to_screen && !animating_transform_to_screen;
  // To avoid color fringing, LCD text should only be used on opaque layers with
  // just integral translation.
  bool layer_can_use_lcd_text =
      data_from_ancestor.subtree_can_use_lcd_text &&
      accumulated_draw_opacity == 1.f &&
      layer_draw_properties.target_space_transform.
          IsIdentityOrIntegerTranslation();

  gfx::RectF content_rect(layer->content_bounds());

  // full_hierarchy_matrix is the matrix that transforms objects between screen
  // space (except projection matrix) and the most recent RenderSurfaceImpl's
  // space.  next_hierarchy_matrix will only change if this layer uses a new
  // RenderSurfaceImpl, otherwise remains the same.
  data_for_children.full_hierarchy_matrix =
      data_from_ancestor.full_hierarchy_matrix;

  // If the subtree will scale layer contents by the transform hierarchy, then
  // we should scale things into the render surface by the transform hierarchy
  // to take advantage of that.
  gfx::Vector2dF render_surface_sublayer_scale =
      globals.can_adjust_raster_scales
      ? combined_transform_scales
      : gfx::Vector2dF(layer_scale_factors, layer_scale_factors);

  bool render_to_separate_surface;
  if (globals.can_render_to_separate_surface) {
    render_to_separate_surface = SubtreeShouldRenderToSeparateSurface(
          layer, combined_transform.Preserves2dAxisAlignment());
  } else {
    render_to_separate_surface = IsRootLayer(layer);
  }
  if (render_to_separate_surface) {
    // Check back-face visibility before continuing with this surface and its
    // subtree
    if (!layer->double_sided() && TransformToParentIsKnown(layer) &&
        IsSurfaceBackFaceVisible(layer, combined_transform)) {
      layer->ClearRenderSurfaceLayerList();
      return;
    }

    typename LayerType::RenderSurfaceType* render_surface =
        CreateOrReuseRenderSurface(layer);

    if (IsRootLayer(layer)) {
      // The root layer's render surface size is predetermined and so the root
      // layer can't directly support non-identity transforms.  It should just
      // forward top-level transforms to the rest of the tree.
      data_for_children.parent_matrix = combined_transform;

      // The root surface does not contribute to any other surface, it has no
      // target.
      layer->render_surface()->set_contributes_to_drawn_surface(false);
    } else {
      // The owning layer's draw transform has a scale from content to layer
      // space which we do not want; so here we use the combined_transform
      // instead of the draw_transform. However, we do need to add a different
      // scale factor that accounts for the surface's pixel dimensions.
      combined_transform.Scale(1.0 / render_surface_sublayer_scale.x(),
                               1.0 / render_surface_sublayer_scale.y());
      render_surface->SetDrawTransform(combined_transform);

      // The owning layer's transform was re-parented by the surface, so the
      // layer's new draw_transform only needs to scale the layer to surface
      // space.
      layer_draw_properties.target_space_transform.MakeIdentity();
      layer_draw_properties.target_space_transform.
          Scale(render_surface_sublayer_scale.x() / layer->contents_scale_x(),
                render_surface_sublayer_scale.y() / layer->contents_scale_y());

      // Inside the surface's subtree, we scale everything to the owning layer's
      // scale.  The sublayer matrix transforms layer rects into target surface
      // content space.  Conceptually, all layers in the subtree inherit the
      // scale at the point of the render surface in the transform hierarchy,
      // but we apply it explicitly to the owning layer and the remainder of the
      // subtree independently.
      DCHECK(data_for_children.parent_matrix.IsIdentity());
      data_for_children.parent_matrix.Scale(render_surface_sublayer_scale.x(),
                            render_surface_sublayer_scale.y());

      // Even if the |layer_is_drawn|, it only contributes to a drawn surface
      // when the |layer_is_visible|.
      layer->render_surface()->set_contributes_to_drawn_surface(
          layer_is_visible);
    }

    // The opacity value is moved from the layer to its surface, so that the
    // entire subtree properly inherits opacity.
    render_surface->SetDrawOpacity(accumulated_draw_opacity);
    render_surface->SetDrawOpacityIsAnimating(animating_opacity_to_target);
    animating_opacity_to_target = false;
    layer_draw_properties.opacity = 1.f;
    layer_draw_properties.opacity_is_animating = animating_opacity_to_target;
    layer_draw_properties.screen_space_opacity_is_animating =
        animating_opacity_to_screen;

    render_surface->SetTargetSurfaceTransformsAreAnimating(
        animating_transform_to_target);
    render_surface->SetScreenSpaceTransformsAreAnimating(
        animating_transform_to_screen);
    animating_transform_to_target = false;
    layer_draw_properties.target_space_transform_is_animating =
        animating_transform_to_target;
    layer_draw_properties.screen_space_transform_is_animating =
        animating_transform_to_screen;

    // Update the aggregate hierarchy matrix to include the transform of the
    // newly created RenderSurfaceImpl.
    data_for_children.full_hierarchy_matrix.PreconcatTransform(
        render_surface->draw_transform());

    if (layer->mask_layer()) {
      DrawProperties<LayerType>& mask_layer_draw_properties =
          layer->mask_layer()->draw_properties();
      mask_layer_draw_properties.render_target = layer;
      mask_layer_draw_properties.visible_content_rect =
          gfx::Rect(layer->content_bounds());
    }

    if (layer->replica_layer() && layer->replica_layer()->mask_layer()) {
      DrawProperties<LayerType>& replica_mask_draw_properties =
          layer->replica_layer()->mask_layer()->draw_properties();
      replica_mask_draw_properties.render_target = layer;
      replica_mask_draw_properties.visible_content_rect =
          gfx::Rect(layer->content_bounds());
    }

    // Ignore occlusion from outside the surface when surface contents need to
    // be fully drawn. Layers with copy-request need to be complete.
    // We could be smarter about layers with replica and exclude regions
    // where both layer and the replica are occluded, but this seems like an
    // overkill. The same is true for layers with filters that move pixels.
    // TODO(senorblanco): make this smarter for the SkImageFilter case (check
    // for pixel-moving filters)
    if (layer->HasCopyRequest() ||
        layer->has_replica() ||
        layer->filters().HasReferenceFilter() ||
        layer->filters().HasFilterThatMovesPixels()) {
      nearest_occlusion_immune_ancestor_surface = render_surface;
    }
    render_surface->SetNearestOcclusionImmuneAncestor(
        nearest_occlusion_immune_ancestor_surface);

    layer_or_ancestor_clips_descendants = false;
    bool subtree_is_clipped_by_surface_bounds = false;
    if (ancestor_clips_subtree) {
      // It may be the layer or the surface doing the clipping of the subtree,
      // but in either case, we'll be clipping to the projected clip rect of our
      // ancestor.
      gfx::Transform inverse_surface_draw_transform(
          gfx::Transform::kSkipInitialization);
      if (!render_surface->draw_transform().GetInverse(
              &inverse_surface_draw_transform)) {
        // TODO(shawnsingh): Either we need to handle uninvertible transforms
        // here, or DCHECK that the transform is invertible.
      }

      gfx::Rect projected_surface_rect = MathUtil::ProjectEnclosingClippedRect(
          inverse_surface_draw_transform, ancestor_clip_rect_in_target_space);

      if (layer_draw_properties.num_unclipped_descendants > 0) {
        // If we have unclipped descendants, we cannot count on the render
        // surface's bounds clipping our subtree: the unclipped descendants
        // could cause us to expand our bounds. In this case, we must rely on
        // layer clipping for correctess. NB: since we can only encounter
        // translations between a clip child and its clip parent, clipping is
        // guaranteed to be exact in this case.
        layer_or_ancestor_clips_descendants = true;
        clip_rect_in_target_space = projected_surface_rect;
      } else {
        // The new render_surface here will correctly clip the entire subtree.
        // So, we do not need to continue propagating the clipping state further
        // down the tree. This way, we can avoid transforming clip rects from
        // ancestor target surface space to current target surface space that
        // could cause more w < 0 headaches. The render surface clip rect is
        // expressed in the space where this surface draws, i.e. the same space
        // as clip_rect_from_ancestor_in_ancestor_target_space.
        render_surface->SetClipRect(ancestor_clip_rect_in_target_space);
        clip_rect_of_target_surface_in_target_space = projected_surface_rect;
        subtree_is_clipped_by_surface_bounds = true;
      }
    }

    DCHECK(layer->render_surface());
    DCHECK(!layer->parent() || layer->parent()->render_target() ==
           accumulated_surface_state->back().render_target);

    accumulated_surface_state->push_back(
        AccumulatedSurfaceState<LayerType>(layer));

    render_surface->SetIsClipped(subtree_is_clipped_by_surface_bounds);
    if (!subtree_is_clipped_by_surface_bounds) {
      render_surface->SetClipRect(gfx::Rect());
      clip_rect_of_target_surface_in_target_space =
          data_from_ancestor.clip_rect_of_target_surface_in_target_space;
    }

    // If the new render surface is drawn translucent or with a non-integral
    // translation then the subtree that gets drawn on this render surface
    // cannot use LCD text.
    data_for_children.subtree_can_use_lcd_text = layer_can_use_lcd_text;

    render_surface_layer_list->push_back(layer);
  } else {
    DCHECK(layer->parent());

    // Note: layer_draw_properties.target_space_transform is computed above,
    // before this if-else statement.
    layer_draw_properties.target_space_transform_is_animating =
        animating_transform_to_target;
    layer_draw_properties.screen_space_transform_is_animating =
        animating_transform_to_screen;
    layer_draw_properties.opacity = accumulated_draw_opacity;
    layer_draw_properties.opacity_is_animating = animating_opacity_to_target;
    layer_draw_properties.screen_space_opacity_is_animating =
        animating_opacity_to_screen;
    data_for_children.parent_matrix = combined_transform;

    layer->ClearRenderSurface();

    // Layers without render_surfaces directly inherit the ancestor's clip
    // status.
    layer_or_ancestor_clips_descendants = ancestor_clips_subtree;
    if (ancestor_clips_subtree) {
      clip_rect_in_target_space =
          ancestor_clip_rect_in_target_space;
    }

    // The surface's cached clip rect value propagates regardless of what
    // clipping goes on between layers here.
    clip_rect_of_target_surface_in_target_space =
        data_from_ancestor.clip_rect_of_target_surface_in_target_space;

    // Layers that are not their own render_target will render into the target
    // of their nearest ancestor.
    layer_draw_properties.render_target = layer->parent()->render_target();
  }

  if (adjust_text_aa)
    layer_draw_properties.can_use_lcd_text = layer_can_use_lcd_text;

  gfx::Rect rect_in_target_space = ToEnclosingRect(
      MathUtil::MapClippedRect(layer->draw_transform(), content_rect));

  if (LayerClipsSubtree(layer)) {
    layer_or_ancestor_clips_descendants = true;
    if (ancestor_clips_subtree && !layer->render_surface()) {
      // A layer without render surface shares the same target as its ancestor.
      clip_rect_in_target_space =
          ancestor_clip_rect_in_target_space;
      clip_rect_in_target_space.Intersect(rect_in_target_space);
    } else {
      clip_rect_in_target_space = rect_in_target_space;
    }
  }

  // Tell the layer the rect that it's clipped by. In theory we could use a
  // tighter clip rect here (drawable_content_rect), but that actually does not
  // reduce how much would be drawn, and instead it would create unnecessary
  // changes to scissor state affecting GPU performance. Our clip information
  // is used in the recursion below, so we must set it beforehand.
  layer_draw_properties.is_clipped = layer_or_ancestor_clips_descendants;
  if (layer_or_ancestor_clips_descendants) {
    layer_draw_properties.clip_rect = clip_rect_in_target_space;
  } else {
    // Initialize the clip rect to a safe value that will not clip the
    // layer, just in case clipping is still accidentally used.
    layer_draw_properties.clip_rect = rect_in_target_space;
  }

  typename LayerType::LayerListType& descendants =
      (layer->render_surface() ? layer->render_surface()->layer_list()
                               : *layer_list);

  // Any layers that are appended after this point are in the layer's subtree
  // and should be included in the sorting process.
  size_t sorting_start_index = descendants.size();

  if (!LayerShouldBeSkipped(layer, layer_is_drawn)) {
    MarkLayerWithRenderSurfaceLayerListId(layer,
                                          current_render_surface_layer_list_id);
    descendants.push_back(layer);
  }

  // Any layers that are appended after this point may need to be sorted if we
  // visit the children out of order.
  size_t render_surface_layer_list_child_sorting_start_index =
      render_surface_layer_list->size();
  size_t layer_list_child_sorting_start_index = descendants.size();

  if (!layer->children().empty()) {
    if (layer == globals.page_scale_application_layer) {
      data_for_children.parent_matrix.Scale(
          globals.page_scale_factor,
          globals.page_scale_factor);
      data_for_children.in_subtree_of_page_scale_application_layer = true;
    }

    // Flatten to 2D if the layer doesn't preserve 3D.
    if (layer->should_flatten_transform())
      data_for_children.parent_matrix.FlattenTo2d();

    data_for_children.scroll_compensation_matrix =
        ComputeScrollCompensationMatrixForChildren(
            layer,
            data_from_ancestor.parent_matrix,
            data_from_ancestor.scroll_compensation_matrix,
            effective_scroll_delta);
    data_for_children.fixed_container =
        layer->IsContainerForFixedPositionLayers() ?
            layer : data_from_ancestor.fixed_container;

    data_for_children.clip_rect_in_target_space = clip_rect_in_target_space;
    data_for_children.clip_rect_of_target_surface_in_target_space =
        clip_rect_of_target_surface_in_target_space;
    data_for_children.ancestor_clips_subtree =
        layer_or_ancestor_clips_descendants;
    data_for_children.nearest_occlusion_immune_ancestor_surface =
        nearest_occlusion_immune_ancestor_surface;
    data_for_children.subtree_is_visible_from_ancestor = layer_is_drawn;
  }

  std::vector<LayerType*> sorted_children;
  bool child_order_changed = false;
  if (layer_draw_properties.has_child_with_a_scroll_parent)
    child_order_changed = SortChildrenForRecursion(&sorted_children, *layer);

  for (size_t i = 0; i < layer->children().size(); ++i) {
    // If one of layer's children has a scroll parent, then we may have to
    // visit the children out of order. The new order is stored in
    // sorted_children. Otherwise, we'll grab the child directly from the
    // layer's list of children.
    LayerType* child =
        layer_draw_properties.has_child_with_a_scroll_parent
            ? sorted_children[i]
            : LayerTreeHostCommon::get_layer_as_raw_ptr(layer->children(), i);

    child->draw_properties().index_of_first_descendants_addition =
        descendants.size();
    child->draw_properties().index_of_first_render_surface_layer_list_addition =
        render_surface_layer_list->size();

    CalculateDrawPropertiesInternal<LayerType>(
        child,
        globals,
        data_for_children,
        render_surface_layer_list,
        &descendants,
        accumulated_surface_state,
        current_render_surface_layer_list_id);
    if (child->render_surface() &&
        !child->render_surface()->layer_list().empty() &&
        !child->render_surface()->content_rect().IsEmpty()) {
      // This child will contribute its render surface, which means
      // we need to mark just the mask layer (and replica mask layer)
      // with the id.
      MarkMasksWithRenderSurfaceLayerListId(
          child, current_render_surface_layer_list_id);
      descendants.push_back(child);
    }

    child->draw_properties().num_descendants_added =
        descendants.size() -
        child->draw_properties().index_of_first_descendants_addition;
    child->draw_properties().num_render_surfaces_added =
        render_surface_layer_list->size() -
        child->draw_properties()
            .index_of_first_render_surface_layer_list_addition;
  }

  // Add the unsorted layer list contributions, if necessary.
  if (child_order_changed) {
    SortLayerListContributions(
        *layer,
        GetLayerListForSorting(render_surface_layer_list),
        render_surface_layer_list_child_sorting_start_index,
        &GetNewRenderSurfacesStartIndexAndCount<LayerType>);

    SortLayerListContributions(
        *layer,
        &descendants,
        layer_list_child_sorting_start_index,
        &GetNewDescendantsStartIndexAndCount<LayerType>);
  }

  // Compute the total drawable_content_rect for this subtree (the rect is in
  // target surface space).
  gfx::Rect local_drawable_content_rect_of_subtree =
      accumulated_surface_state->back().drawable_content_rect;
  if (layer->render_surface()) {
    DCHECK(accumulated_surface_state->back().render_target == layer);
    accumulated_surface_state->pop_back();
  }

  if (layer->render_surface() && !IsRootLayer(layer) &&
      layer->render_surface()->layer_list().empty()) {
    RemoveSurfaceForEarlyExit(layer, render_surface_layer_list);
    return;
  }

  // Compute the layer's drawable content rect (the rect is in target surface
  // space).
  layer_draw_properties.drawable_content_rect = rect_in_target_space;
  if (layer_or_ancestor_clips_descendants) {
    layer_draw_properties.drawable_content_rect.Intersect(
        clip_rect_in_target_space);
  }
  if (layer->DrawsContent()) {
    local_drawable_content_rect_of_subtree.Union(
        layer_draw_properties.drawable_content_rect);
  }

  // Compute the layer's visible content rect (the rect is in content space).
  layer_draw_properties.visible_content_rect = CalculateVisibleContentRect(
      layer, clip_rect_of_target_surface_in_target_space, rect_in_target_space);

  // Compute the remaining properties for the render surface, if the layer has
  // one.
  if (IsRootLayer(layer)) {
    // The root layer's surface's content_rect is always the entire viewport.
    DCHECK(layer->render_surface());
    layer->render_surface()->SetContentRect(
        ancestor_clip_rect_in_target_space);
  } else if (layer->render_surface()) {
    typename LayerType::RenderSurfaceType* render_surface =
        layer->render_surface();
    gfx::Rect clipped_content_rect = local_drawable_content_rect_of_subtree;

    // Don't clip if the layer is reflected as the reflection shouldn't be
    // clipped. If the layer is animating, then the surface's transform to
    // its target is not known on the main thread, and we should not use it
    // to clip.
    if (!layer->replica_layer() && TransformToParentIsKnown(layer)) {
      // Note, it is correct to use data_from_ancestor.ancestor_clips_subtree
      // here, because we are looking at this layer's render_surface, not the
      // layer itself.
      if (render_surface->is_clipped() && !clipped_content_rect.IsEmpty()) {
        gfx::Rect surface_clip_rect = LayerTreeHostCommon::CalculateVisibleRect(
            render_surface->clip_rect(),
            clipped_content_rect,
            render_surface->draw_transform());
        clipped_content_rect.Intersect(surface_clip_rect);
      }
    }

    // The RenderSurfaceImpl backing texture cannot exceed the maximum supported
    // texture size.
    clipped_content_rect.set_width(
        std::min(clipped_content_rect.width(), globals.max_texture_size));
    clipped_content_rect.set_height(
        std::min(clipped_content_rect.height(), globals.max_texture_size));

    if (clipped_content_rect.IsEmpty()) {
      RemoveSurfaceForEarlyExit(layer, render_surface_layer_list);
      return;
    }

    // Layers having a non-default blend mode will blend with the content
    // inside its parent's render target. This render target should be
    // either root_for_isolated_group, or the root of the layer tree.
    // Otherwise, this layer will use an incomplete backdrop, limited to its
    // render target and the blending result will be incorrect.
    DCHECK(layer->uses_default_blend_mode() || IsRootLayer(layer) ||
           !layer->parent()->render_target() ||
           IsRootLayer(layer->parent()->render_target()) ||
           layer->parent()->render_target()->is_root_for_isolated_group());

    render_surface->SetContentRect(clipped_content_rect);

    // The owning layer's screen_space_transform has a scale from content to
    // layer space which we need to undo and replace with a scale from the
    // surface's subtree into layer space.
    gfx::Transform screen_space_transform = layer->screen_space_transform();
    screen_space_transform.Scale(
        layer->contents_scale_x() / render_surface_sublayer_scale.x(),
        layer->contents_scale_y() / render_surface_sublayer_scale.y());
    render_surface->SetScreenSpaceTransform(screen_space_transform);

    if (layer->replica_layer()) {
      gfx::Transform surface_origin_to_replica_origin_transform;
      surface_origin_to_replica_origin_transform.Scale(
          render_surface_sublayer_scale.x(), render_surface_sublayer_scale.y());
      surface_origin_to_replica_origin_transform.Translate(
          layer->replica_layer()->position().x() +
              layer->replica_layer()->transform_origin().x(),
          layer->replica_layer()->position().y() +
              layer->replica_layer()->transform_origin().y());
      surface_origin_to_replica_origin_transform.PreconcatTransform(
          layer->replica_layer()->transform());
      surface_origin_to_replica_origin_transform.Translate(
          -layer->replica_layer()->transform_origin().x(),
          -layer->replica_layer()->transform_origin().y());
      surface_origin_to_replica_origin_transform.Scale(
          1.0 / render_surface_sublayer_scale.x(),
          1.0 / render_surface_sublayer_scale.y());

      // Compute the replica's "originTransform" that maps from the replica's
      // origin space to the target surface origin space.
      gfx::Transform replica_origin_transform =
          layer->render_surface()->draw_transform() *
          surface_origin_to_replica_origin_transform;
      render_surface->SetReplicaDrawTransform(replica_origin_transform);

      // Compute the replica's "screen_space_transform" that maps from the
      // replica's origin space to the screen's origin space.
      gfx::Transform replica_screen_space_transform =
          layer->render_surface()->screen_space_transform() *
          surface_origin_to_replica_origin_transform;
      render_surface->SetReplicaScreenSpaceTransform(
          replica_screen_space_transform);
    }
  }

  SavePaintPropertiesLayer(layer);

  // If neither this layer nor any of its children were added, early out.
  if (sorting_start_index == descendants.size()) {
    DCHECK(!layer->render_surface() || IsRootLayer(layer));
    return;
  }

  // If preserves-3d then sort all the descendants in 3D so that they can be
  // drawn from back to front. If the preserves-3d property is also set on the
  // parent then skip the sorting as the parent will sort all the descendants
  // anyway.
  if (globals.layer_sorter && descendants.size() && layer->is_3d_sorted() &&
      !LayerIsInExisting3DRenderingContext(layer)) {
    SortLayers(descendants.begin() + sorting_start_index,
               descendants.end(),
               globals.layer_sorter);
  }

  UpdateAccumulatedSurfaceState<LayerType>(
      layer, local_drawable_content_rect_of_subtree, accumulated_surface_state);

  if (layer->HasContributingDelegatedRenderPasses()) {
    layer->render_target()->render_surface()->
        AddContributingDelegatedRenderPassLayer(layer);
  }
}

template <typename LayerType, typename RenderSurfaceLayerListType>
static void ProcessCalcDrawPropsInputs(
    const LayerTreeHostCommon::CalcDrawPropsInputs<LayerType,
                                                   RenderSurfaceLayerListType>&
        inputs,
    SubtreeGlobals<LayerType>* globals,
    DataForRecursion<LayerType>* data_for_recursion) {
  DCHECK(inputs.root_layer);
  DCHECK(IsRootLayer(inputs.root_layer));
  DCHECK(inputs.render_surface_layer_list);

  gfx::Transform identity_matrix;

  // The root layer's render_surface should receive the device viewport as the
  // initial clip rect.
  gfx::Rect device_viewport_rect(inputs.device_viewport_size);

  gfx::Vector2dF device_transform_scale_components =
      MathUtil::ComputeTransform2dScaleComponents(inputs.device_transform, 1.f);
  // Not handling the rare case of different x and y device scale.
  float device_transform_scale =
      std::max(device_transform_scale_components.x(),
               device_transform_scale_components.y());

  gfx::Transform scaled_device_transform = inputs.device_transform;
  scaled_device_transform.Scale(inputs.device_scale_factor,
                                inputs.device_scale_factor);

  globals->layer_sorter = NULL;
  globals->max_texture_size = inputs.max_texture_size;
  globals->device_scale_factor =
      inputs.device_scale_factor * device_transform_scale;
  globals->page_scale_factor = inputs.page_scale_factor;
  globals->page_scale_application_layer = inputs.page_scale_application_layer;
  globals->can_render_to_separate_surface =
      inputs.can_render_to_separate_surface;
  globals->can_adjust_raster_scales = inputs.can_adjust_raster_scales;

  data_for_recursion->parent_matrix = scaled_device_transform;
  data_for_recursion->full_hierarchy_matrix = identity_matrix;
  data_for_recursion->scroll_compensation_matrix = identity_matrix;
  data_for_recursion->fixed_container = inputs.root_layer;
  data_for_recursion->clip_rect_in_target_space = device_viewport_rect;
  data_for_recursion->clip_rect_of_target_surface_in_target_space =
      device_viewport_rect;
  data_for_recursion->maximum_animation_contents_scale = 0.f;
  data_for_recursion->ancestor_is_animating_scale = false;
  data_for_recursion->ancestor_clips_subtree = true;
  data_for_recursion->nearest_occlusion_immune_ancestor_surface = NULL;
  data_for_recursion->in_subtree_of_page_scale_application_layer = false;
  data_for_recursion->subtree_can_use_lcd_text = inputs.can_use_lcd_text;
  data_for_recursion->subtree_is_visible_from_ancestor = true;
}

void LayerTreeHostCommon::CalculateDrawProperties(
    CalcDrawPropsMainInputs* inputs) {
  LayerList dummy_layer_list;
  SubtreeGlobals<Layer> globals;
  DataForRecursion<Layer> data_for_recursion;
  ProcessCalcDrawPropsInputs(*inputs, &globals, &data_for_recursion);

  PreCalculateMetaInformationRecursiveData recursive_data;
  PreCalculateMetaInformation(inputs->root_layer, &recursive_data);
  std::vector<AccumulatedSurfaceState<Layer> > accumulated_surface_state;
  CalculateDrawPropertiesInternal<Layer>(
      inputs->root_layer,
      globals,
      data_for_recursion,
      inputs->render_surface_layer_list,
      &dummy_layer_list,
      &accumulated_surface_state,
      inputs->current_render_surface_layer_list_id);

  // The dummy layer list should not have been used.
  DCHECK_EQ(0u, dummy_layer_list.size());
  // A root layer render_surface should always exist after
  // CalculateDrawProperties.
  DCHECK(inputs->root_layer->render_surface());
}

void LayerTreeHostCommon::CalculateDrawProperties(
    CalcDrawPropsImplInputs* inputs) {
  LayerImplList dummy_layer_list;
  SubtreeGlobals<LayerImpl> globals;
  DataForRecursion<LayerImpl> data_for_recursion;
  ProcessCalcDrawPropsInputs(*inputs, &globals, &data_for_recursion);

  LayerSorter layer_sorter;
  globals.layer_sorter = &layer_sorter;

  PreCalculateMetaInformationRecursiveData recursive_data;
  PreCalculateMetaInformation(inputs->root_layer, &recursive_data);
  std::vector<AccumulatedSurfaceState<LayerImpl> >
      accumulated_surface_state;
  CalculateDrawPropertiesInternal<LayerImpl>(
      inputs->root_layer,
      globals,
      data_for_recursion,
      inputs->render_surface_layer_list,
      &dummy_layer_list,
      &accumulated_surface_state,
      inputs->current_render_surface_layer_list_id);

  // The dummy layer list should not have been used.
  DCHECK_EQ(0u, dummy_layer_list.size());
  // A root layer render_surface should always exist after
  // CalculateDrawProperties.
  DCHECK(inputs->root_layer->render_surface());
}

}  // namespace cc