summaryrefslogtreecommitdiffstats
path: root/cc/trees/property_tree.cc
blob: 570a687dadbad4b7a15383e17b48f4354c14a23c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <set>
#include <vector>

#include "base/logging.h"
#include "cc/base/math_util.h"
#include "cc/trees/property_tree.h"

namespace cc {

template <typename T>
PropertyTree<T>::PropertyTree()
    : needs_update_(false) {
  nodes_.push_back(T());
  back()->id = 0;
  back()->parent_id = -1;
}

template <typename T>
PropertyTree<T>::~PropertyTree() {
}

TransformTree::TransformTree()
    : source_to_parent_updates_allowed_(true),
      page_scale_factor_(1.f),
      device_scale_factor_(1.f),
      device_transform_scale_factor_(1.f) {}

TransformTree::~TransformTree() {
}

template <typename T>
int PropertyTree<T>::Insert(const T& tree_node, int parent_id) {
  DCHECK_GT(nodes_.size(), 0u);
  nodes_.push_back(tree_node);
  T& node = nodes_.back();
  node.parent_id = parent_id;
  node.id = static_cast<int>(nodes_.size()) - 1;
  return node.id;
}

template <typename T>
void PropertyTree<T>::clear() {
  nodes_.clear();
  nodes_.push_back(T());
  back()->id = 0;
  back()->parent_id = -1;
}

template class PropertyTree<TransformNode>;
template class PropertyTree<ClipNode>;
template class PropertyTree<EffectNode>;

TransformNodeData::TransformNodeData()
    : target_id(-1),
      content_target_id(-1),
      source_node_id(-1),
      needs_local_transform_update(true),
      is_invertible(true),
      ancestors_are_invertible(true),
      is_animated(false),
      to_screen_is_animated(false),
      has_only_translation_animations(true),
      to_screen_has_scale_animation(false),
      flattens_inherited_transform(false),
      node_and_ancestors_are_flat(true),
      node_and_ancestors_have_only_integer_translation(true),
      scrolls(false),
      needs_sublayer_scale(false),
      affected_by_inner_viewport_bounds_delta_x(false),
      affected_by_inner_viewport_bounds_delta_y(false),
      affected_by_outer_viewport_bounds_delta_x(false),
      affected_by_outer_viewport_bounds_delta_y(false),
      in_subtree_of_page_scale_layer(false),
      post_local_scale_factor(1.0f),
      local_maximum_animation_target_scale(0.f),
      local_starting_animation_scale(0.f),
      combined_maximum_animation_target_scale(0.f),
      combined_starting_animation_scale(0.f) {}

TransformNodeData::~TransformNodeData() {
}

void TransformNodeData::update_pre_local_transform(
    const gfx::Point3F& transform_origin) {
  pre_local.MakeIdentity();
  pre_local.Translate3d(-transform_origin.x(), -transform_origin.y(),
                        -transform_origin.z());
}

void TransformNodeData::update_post_local_transform(
    const gfx::PointF& position,
    const gfx::Point3F& transform_origin) {
  post_local.MakeIdentity();
  post_local.Scale(post_local_scale_factor, post_local_scale_factor);
  post_local.Translate3d(
      position.x() + source_offset.x() + transform_origin.x(),
      position.y() + source_offset.y() + transform_origin.y(),
      transform_origin.z());
}

ClipNodeData::ClipNodeData()
    : transform_id(-1),
      target_id(-1),
      applies_local_clip(true),
      layer_clipping_uses_only_local_clip(false),
      target_is_clipped(false),
      layers_are_clipped(false),
      layers_are_clipped_when_surfaces_disabled(false),
      resets_clip(false) {}

EffectNodeData::EffectNodeData()
    : opacity(1.f),
      screen_space_opacity(1.f),
      has_render_surface(false),
      transform_id(0),
      clip_id(0) {}

void TransformTree::clear() {
  PropertyTree<TransformNode>::clear();

  nodes_affected_by_inner_viewport_bounds_delta_.clear();
  nodes_affected_by_outer_viewport_bounds_delta_.clear();
}

bool TransformTree::ComputeTransform(int source_id,
                                     int dest_id,
                                     gfx::Transform* transform) const {
  transform->MakeIdentity();

  if (source_id == dest_id)
    return true;

  if (source_id > dest_id) {
    return CombineTransformsBetween(source_id, dest_id, transform);
  }

  return CombineInversesBetween(source_id, dest_id, transform);
}

bool TransformTree::ComputeTransformWithDestinationSublayerScale(
    int source_id,
    int dest_id,
    gfx::Transform* transform) const {
  bool success = ComputeTransform(source_id, dest_id, transform);

  const TransformNode* dest_node = Node(dest_id);
  if (!dest_node->data.needs_sublayer_scale)
    return success;

  transform->matrix().postScale(dest_node->data.sublayer_scale.x(),
                                dest_node->data.sublayer_scale.y(), 1.f);
  return success;
}

bool TransformTree::ComputeTransformWithSourceSublayerScale(
    int source_id,
    int dest_id,
    gfx::Transform* transform) const {
  bool success = ComputeTransform(source_id, dest_id, transform);

  const TransformNode* source_node = Node(source_id);
  if (!source_node->data.needs_sublayer_scale)
    return success;

  if (source_node->data.sublayer_scale.x() == 0 ||
      source_node->data.sublayer_scale.y() == 0)
    return false;

  transform->Scale(1.f / source_node->data.sublayer_scale.x(),
                   1.f / source_node->data.sublayer_scale.y());
  return success;
}

bool TransformTree::Are2DAxisAligned(int source_id, int dest_id) const {
  gfx::Transform transform;
  return ComputeTransform(source_id, dest_id, &transform) &&
         transform.Preserves2dAxisAlignment();
}

bool TransformTree::NeedsSourceToParentUpdate(TransformNode* node) {
  return (source_to_parent_updates_allowed() &&
          node->parent_id != node->data.source_node_id);
}

void TransformTree::UpdateTransforms(int id) {
  TransformNode* node = Node(id);
  TransformNode* parent_node = parent(node);
  TransformNode* target_node = Node(node->data.target_id);
  if (node->data.needs_local_transform_update ||
      NeedsSourceToParentUpdate(node))
    UpdateLocalTransform(node);
  else
    UndoSnapping(node);
  UpdateScreenSpaceTransform(node, parent_node, target_node);
  UpdateSublayerScale(node);
  UpdateTargetSpaceTransform(node, target_node);
  UpdateAnimationProperties(node, parent_node);
  UpdateSnapping(node);
  UpdateNodeAndAncestorsHaveIntegerTranslations(node, parent_node);
}

bool TransformTree::IsDescendant(int desc_id, int source_id) const {
  while (desc_id != source_id) {
    if (desc_id < 0)
      return false;
    desc_id = Node(desc_id)->parent_id;
  }
  return true;
}

bool TransformTree::CombineTransformsBetween(int source_id,
                                             int dest_id,
                                             gfx::Transform* transform) const {
  DCHECK(source_id > dest_id);
  const TransformNode* current = Node(source_id);
  const TransformNode* dest = Node(dest_id);
  // Combine transforms to and from the screen when possible. Since flattening
  // is a non-linear operation, we cannot use this approach when there is
  // non-trivial flattening between the source and destination nodes. For
  // example, consider the tree R->A->B->C, where B flattens its inherited
  // transform, and A has a non-flat transform. Suppose C is the source and A is
  // the destination. The expected result is C * B. But C's to_screen
  // transform is C * B * flattened(A * R), and A's from_screen transform is
  // R^{-1} * A^{-1}. If at least one of A and R isn't flat, the inverse of
  // flattened(A * R) won't be R^{-1} * A{-1}, so multiplying C's to_screen and
  // A's from_screen will not produce the correct result.
  if (!dest || (dest->data.ancestors_are_invertible &&
                dest->data.node_and_ancestors_are_flat)) {
    transform->ConcatTransform(current->data.to_screen);
    if (dest)
      transform->ConcatTransform(dest->data.from_screen);
    return true;
  }

  // Flattening is defined in a way that requires it to be applied while
  // traversing downward in the tree. We first identify nodes that are on the
  // path from the source to the destination (this is traversing upward), and
  // then we visit these nodes in reverse order, flattening as needed. We
  // early-out if we get to a node whose target node is the destination, since
  // we can then re-use the target space transform stored at that node. However,
  // we cannot re-use a stored target space transform if the destination has a
  // zero sublayer scale, since stored target space transforms have sublayer
  // scale baked in, but we need to compute an unscaled transform.
  std::vector<int> source_to_destination;
  source_to_destination.push_back(current->id);
  current = parent(current);
  bool destination_has_non_zero_sublayer_scale =
      dest->data.sublayer_scale.x() != 0.f &&
      dest->data.sublayer_scale.y() != 0.f;
  DCHECK(destination_has_non_zero_sublayer_scale ||
         !dest->data.ancestors_are_invertible);
  for (; current && current->id > dest_id; current = parent(current)) {
    if (destination_has_non_zero_sublayer_scale &&
        current->data.target_id == dest_id &&
        current->data.content_target_id == dest_id)
      break;
    source_to_destination.push_back(current->id);
  }

  gfx::Transform combined_transform;
  if (current->id > dest_id) {
    combined_transform = current->data.to_target;
    // The stored target space transform has sublayer scale baked in, but we
    // need the unscaled transform.
    combined_transform.Scale(1.0f / dest->data.sublayer_scale.x(),
                             1.0f / dest->data.sublayer_scale.y());
  } else if (current->id < dest_id) {
    // We have reached the lowest common ancestor of the source and destination
    // nodes. This case can occur when we are transforming between a node
    // corresponding to a fixed-position layer (or its descendant) and the node
    // corresponding to the layer's render target. For example, consider the
    // layer tree R->T->S->F where F is fixed-position, S owns a render surface,
    // and T has a significant transform. This will yield the following
    // transform tree:
    //    R
    //    |
    //    T
    //   /|
    //  S F
    // In this example, T will have id 2, S will have id 3, and F will have id
    // 4. When walking up the ancestor chain from F, the first node with a
    // smaller id than S will be T, the lowest common ancestor of these nodes.
    // We compute the transform from T to S here, and then from F to T in the
    // loop below.
    DCHECK(IsDescendant(dest_id, current->id));
    CombineInversesBetween(current->id, dest_id, &combined_transform);
    DCHECK(combined_transform.IsApproximatelyIdentityOrTranslation(
        SkDoubleToMScalar(1e-4)));
  }

  size_t source_to_destination_size = source_to_destination.size();
  for (size_t i = 0; i < source_to_destination_size; ++i) {
    size_t index = source_to_destination_size - 1 - i;
    const TransformNode* node = Node(source_to_destination[index]);
    if (node->data.flattens_inherited_transform)
      combined_transform.FlattenTo2d();
    combined_transform.PreconcatTransform(node->data.to_parent);
  }

  transform->ConcatTransform(combined_transform);
  return true;
}

bool TransformTree::CombineInversesBetween(int source_id,
                                           int dest_id,
                                           gfx::Transform* transform) const {
  DCHECK(source_id < dest_id);
  const TransformNode* current = Node(dest_id);
  const TransformNode* dest = Node(source_id);
  // Just as in CombineTransformsBetween, we can use screen space transforms in
  // this computation only when there isn't any non-trivial flattening
  // involved.
  if (current->data.ancestors_are_invertible &&
      current->data.node_and_ancestors_are_flat) {
    transform->PreconcatTransform(current->data.from_screen);
    if (dest)
      transform->PreconcatTransform(dest->data.to_screen);
    return true;
  }

  // Inverting a flattening is not equivalent to flattening an inverse. This
  // means we cannot, for example, use the inverse of each node's to_parent
  // transform, flattening where needed. Instead, we must compute the transform
  // from the destination to the source, with flattening, and then invert the
  // result.
  gfx::Transform dest_to_source;
  CombineTransformsBetween(dest_id, source_id, &dest_to_source);
  gfx::Transform source_to_dest;
  bool all_are_invertible = dest_to_source.GetInverse(&source_to_dest);
  transform->PreconcatTransform(source_to_dest);
  return all_are_invertible;
}

void TransformTree::UpdateLocalTransform(TransformNode* node) {
  gfx::Transform transform = node->data.post_local;
  if (NeedsSourceToParentUpdate(node)) {
    gfx::Transform to_parent;
    ComputeTransform(node->data.source_node_id, node->parent_id, &to_parent);
    node->data.source_to_parent = to_parent.To2dTranslation();
  }

  gfx::Vector2dF fixed_position_adjustment;
  if (node->data.affected_by_inner_viewport_bounds_delta_x)
    fixed_position_adjustment.set_x(inner_viewport_bounds_delta_.x());
  else if (node->data.affected_by_outer_viewport_bounds_delta_x)
    fixed_position_adjustment.set_x(outer_viewport_bounds_delta_.x());

  if (node->data.affected_by_inner_viewport_bounds_delta_y)
    fixed_position_adjustment.set_y(inner_viewport_bounds_delta_.y());
  else if (node->data.affected_by_outer_viewport_bounds_delta_y)
    fixed_position_adjustment.set_y(outer_viewport_bounds_delta_.y());

  transform.Translate(
      node->data.source_to_parent.x() - node->data.scroll_offset.x() +
          fixed_position_adjustment.x(),
      node->data.source_to_parent.y() - node->data.scroll_offset.y() +
          fixed_position_adjustment.y());
  transform.PreconcatTransform(node->data.local);
  transform.PreconcatTransform(node->data.pre_local);
  node->data.set_to_parent(transform);
  node->data.needs_local_transform_update = false;
}

void TransformTree::UpdateScreenSpaceTransform(TransformNode* node,
                                               TransformNode* parent_node,
                                               TransformNode* target_node) {
  if (!parent_node) {
    node->data.to_screen = node->data.to_parent;
    node->data.ancestors_are_invertible = true;
    node->data.to_screen_is_animated = false;
    node->data.node_and_ancestors_are_flat = node->data.to_parent.IsFlat();
  } else {
    node->data.to_screen = parent_node->data.to_screen;
    if (node->data.flattens_inherited_transform)
      node->data.to_screen.FlattenTo2d();
    node->data.to_screen.PreconcatTransform(node->data.to_parent);
    node->data.ancestors_are_invertible =
        parent_node->data.ancestors_are_invertible;
    node->data.node_and_ancestors_are_flat =
        parent_node->data.node_and_ancestors_are_flat &&
        node->data.to_parent.IsFlat();
  }

  if (!node->data.to_screen.GetInverse(&node->data.from_screen))
    node->data.ancestors_are_invertible = false;
}

void TransformTree::UpdateSublayerScale(TransformNode* node) {
  // The sublayer scale depends on the screen space transform, so update it too.
  if (!node->data.needs_sublayer_scale) {
    node->data.sublayer_scale = gfx::Vector2dF(1.0f, 1.0f);
    return;
  }

  float layer_scale_factor =
      device_scale_factor_ * device_transform_scale_factor_;
  if (node->data.in_subtree_of_page_scale_layer)
    layer_scale_factor *= page_scale_factor_;
  node->data.sublayer_scale = MathUtil::ComputeTransform2dScaleComponents(
      node->data.to_screen, layer_scale_factor);
}

void TransformTree::UpdateTargetSpaceTransform(TransformNode* node,
                                               TransformNode* target_node) {
  if (node->data.needs_sublayer_scale) {
    node->data.to_target.MakeIdentity();
    node->data.to_target.Scale(node->data.sublayer_scale.x(),
                               node->data.sublayer_scale.y());
  } else {
    // In order to include the root transform for the root surface, we walk up
    // to the root of the transform tree in ComputeTransform.
    int target_id = target_node->id;
    ComputeTransformWithDestinationSublayerScale(node->id, target_id,
                                                 &node->data.to_target);
  }

  if (!node->data.to_target.GetInverse(&node->data.from_target))
    node->data.ancestors_are_invertible = false;
}

void TransformTree::UpdateAnimationProperties(TransformNode* node,
                                              TransformNode* parent_node) {
  bool ancestor_is_animating = false;
  bool ancestor_is_animating_scale = false;
  float ancestor_maximum_target_scale = 0.f;
  float ancestor_starting_animation_scale = 0.f;
  if (parent_node) {
    ancestor_is_animating = parent_node->data.to_screen_is_animated;
    ancestor_is_animating_scale =
        parent_node->data.to_screen_has_scale_animation;
    ancestor_maximum_target_scale =
        parent_node->data.combined_maximum_animation_target_scale;
    ancestor_starting_animation_scale =
        parent_node->data.combined_starting_animation_scale;
  }
  node->data.to_screen_is_animated =
      node->data.is_animated || ancestor_is_animating;
  node->data.to_screen_has_scale_animation =
      !node->data.has_only_translation_animations ||
      ancestor_is_animating_scale;

  // Once we've failed to compute a maximum animated scale at an ancestor, we
  // continue to fail.
  bool failed_at_ancestor =
      ancestor_is_animating_scale && ancestor_maximum_target_scale == 0.f;

  // Computing maximum animated scale in the presence of non-scale/translation
  // transforms isn't supported.
  bool failed_for_non_scale_or_translation =
      !node->data.to_target.IsScaleOrTranslation();

  // We don't attempt to accumulate animation scale from multiple nodes with
  // scale animations, because of the risk of significant overestimation. For
  // example, one node might be increasing scale from 1 to 10 at the same time
  // as another node is decreasing scale from 10 to 1. Naively combining these
  // scales would produce a scale of 100.
  bool failed_for_multiple_scale_animations =
      ancestor_is_animating_scale &&
      !node->data.has_only_translation_animations;

  if (failed_at_ancestor || failed_for_non_scale_or_translation ||
      failed_for_multiple_scale_animations) {
    node->data.combined_maximum_animation_target_scale = 0.f;
    node->data.combined_starting_animation_scale = 0.f;

    // This ensures that descendants know we've failed to compute a maximum
    // animated scale.
    node->data.to_screen_has_scale_animation = true;
    return;
  }

  if (!node->data.to_screen_has_scale_animation) {
    node->data.combined_maximum_animation_target_scale = 0.f;
    node->data.combined_starting_animation_scale = 0.f;
    return;
  }

  // At this point, we know exactly one of this node or an ancestor is animating
  // scale.
  if (node->data.has_only_translation_animations) {
    // An ancestor is animating scale.
    gfx::Vector2dF local_scales =
        MathUtil::ComputeTransform2dScaleComponents(node->data.local, 0.f);
    float max_local_scale = std::max(local_scales.x(), local_scales.y());
    node->data.combined_maximum_animation_target_scale =
        max_local_scale * ancestor_maximum_target_scale;
    node->data.combined_starting_animation_scale =
        max_local_scale * ancestor_starting_animation_scale;
    return;
  }

  if (node->data.local_starting_animation_scale == 0.f ||
      node->data.local_maximum_animation_target_scale == 0.f) {
    node->data.combined_maximum_animation_target_scale = 0.f;
    node->data.combined_starting_animation_scale = 0.f;
    return;
  }

  gfx::Vector2dF ancestor_scales =
      parent_node ? MathUtil::ComputeTransform2dScaleComponents(
                        parent_node->data.to_target, 0.f)
                  : gfx::Vector2dF(1.f, 1.f);
  float max_ancestor_scale = std::max(ancestor_scales.x(), ancestor_scales.y());
  node->data.combined_maximum_animation_target_scale =
      max_ancestor_scale * node->data.local_maximum_animation_target_scale;
  node->data.combined_starting_animation_scale =
      max_ancestor_scale * node->data.local_starting_animation_scale;
}

void TransformTree::UndoSnapping(TransformNode* node) {
  // to_parent transform has the scroll snap from previous frame baked in.
  // We need to undo it and use the un-snapped transform to compute current
  // target and screen space transforms.
  node->data.to_parent.Translate(-node->data.scroll_snap.x(),
                                 -node->data.scroll_snap.y());
}

void TransformTree::UpdateSnapping(TransformNode* node) {
  if (!node->data.scrolls || node->data.to_screen_is_animated ||
      !node->data.to_target.IsScaleOrTranslation()) {
    return;
  }

  // Scroll snapping must be done in target space (the pixels we care about).
  // This means we effectively snap the target space transform. If TT is the
  // target space transform and TT' is TT with its translation components
  // rounded, then what we're after is the scroll delta X, where TT * X = TT'.
  // I.e., we want a transform that will realize our scroll snap. It follows
  // that X = TT^-1 * TT'. We cache TT and TT^-1 to make this more efficient.
  gfx::Transform rounded = node->data.to_target;
  rounded.RoundTranslationComponents();
  gfx::Transform delta = node->data.from_target;
  delta *= rounded;

  DCHECK(delta.IsApproximatelyIdentityOrTranslation(SkDoubleToMScalar(1e-4)))
      << delta.ToString();

  gfx::Vector2dF translation = delta.To2dTranslation();

  // Now that we have our scroll delta, we must apply it to each of our
  // combined, to/from matrices.
  node->data.to_target = rounded;
  node->data.to_parent.Translate(translation.x(), translation.y());
  node->data.from_target.matrix().postTranslate(-translation.x(),
                                                -translation.y(), 0);
  node->data.to_screen.Translate(translation.x(), translation.y());
  node->data.from_screen.matrix().postTranslate(-translation.x(),
                                                -translation.y(), 0);

  node->data.scroll_snap = translation;
}

void TransformTree::SetDeviceTransform(const gfx::Transform& transform,
                                       gfx::PointF root_position) {
  gfx::Transform root_post_local = transform;
  TransformNode* node = Node(1);
  root_post_local.Scale(node->data.post_local_scale_factor,
                        node->data.post_local_scale_factor);
  root_post_local.Translate(root_position.x(), root_position.y());
  if (node->data.post_local == root_post_local)
    return;

  node->data.post_local = root_post_local;
  node->data.needs_local_transform_update = true;
  set_needs_update(true);
}

void TransformTree::SetDeviceTransformScaleFactor(
    const gfx::Transform& transform) {
  gfx::Vector2dF device_transform_scale_components =
      MathUtil::ComputeTransform2dScaleComponents(transform, 1.f);

  // Not handling the rare case of different x and y device scale.
  device_transform_scale_factor_ =
      std::max(device_transform_scale_components.x(),
               device_transform_scale_components.y());
}

void TransformTree::SetInnerViewportBoundsDelta(gfx::Vector2dF bounds_delta) {
  if (inner_viewport_bounds_delta_ == bounds_delta)
    return;

  inner_viewport_bounds_delta_ = bounds_delta;

  if (nodes_affected_by_inner_viewport_bounds_delta_.empty())
    return;

  set_needs_update(true);
  for (int i : nodes_affected_by_inner_viewport_bounds_delta_)
    Node(i)->data.needs_local_transform_update = true;
}

void TransformTree::SetOuterViewportBoundsDelta(gfx::Vector2dF bounds_delta) {
  if (outer_viewport_bounds_delta_ == bounds_delta)
    return;

  outer_viewport_bounds_delta_ = bounds_delta;

  if (nodes_affected_by_outer_viewport_bounds_delta_.empty())
    return;

  set_needs_update(true);
  for (int i : nodes_affected_by_outer_viewport_bounds_delta_)
    Node(i)->data.needs_local_transform_update = true;
}

void TransformTree::AddNodeAffectedByInnerViewportBoundsDelta(int node_id) {
  nodes_affected_by_inner_viewport_bounds_delta_.push_back(node_id);
}

void TransformTree::AddNodeAffectedByOuterViewportBoundsDelta(int node_id) {
  nodes_affected_by_outer_viewport_bounds_delta_.push_back(node_id);
}

bool TransformTree::HasNodesAffectedByInnerViewportBoundsDelta() const {
  return !nodes_affected_by_inner_viewport_bounds_delta_.empty();
}

bool TransformTree::HasNodesAffectedByOuterViewportBoundsDelta() const {
  return !nodes_affected_by_outer_viewport_bounds_delta_.empty();
}

void EffectTree::UpdateOpacities(int id) {
  EffectNode* node = Node(id);
  node->data.screen_space_opacity = node->data.opacity;

  EffectNode* parent_node = parent(node);
  if (parent_node)
    node->data.screen_space_opacity *= parent_node->data.screen_space_opacity;
}

void TransformTree::UpdateNodeAndAncestorsHaveIntegerTranslations(
    TransformNode* node,
    TransformNode* parent_node) {
  node->data.node_and_ancestors_have_only_integer_translation =
      node->data.to_parent.IsIdentityOrIntegerTranslation();
  if (parent_node)
    node->data.node_and_ancestors_have_only_integer_translation =
        node->data.node_and_ancestors_have_only_integer_translation &&
        parent_node->data.node_and_ancestors_have_only_integer_translation;
}

void ClipTree::SetViewportClip(gfx::RectF viewport_rect) {
  if (size() < 2)
    return;
  ClipNode* node = Node(1);
  if (viewport_rect == node->data.clip)
    return;
  node->data.clip = viewport_rect;
  set_needs_update(true);
}

gfx::RectF ClipTree::ViewportClip() {
  const unsigned long min_size = 1;
  DCHECK_GT(size(), min_size);
  return Node(1)->data.clip;
}

PropertyTrees::PropertyTrees()
    : needs_rebuild(true),
      non_root_surfaces_enabled(true),
      sequence_number(0) {}

}  // namespace cc