1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
|
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <stddef.h>
#include <stdint.h>
#include <map>
#include <vector>
#include "base/command_line.h"
#include "base/macros.h"
#include "base/strings/stringprintf.h"
#include "base/test/trace_event_analyzer.h"
#include "base/time/default_tick_clock.h"
#include "base/win/windows_version.h"
#include "chrome/browser/extensions/extension_apitest.h"
#include "chrome/browser/extensions/extension_service.h"
#include "chrome/browser/extensions/tab_helper.h"
#include "chrome/browser/profiles/profile.h"
#include "chrome/browser/ui/exclusive_access/fullscreen_controller.h"
#include "chrome/common/chrome_switches.h"
#include "chrome/test/base/test_launcher_utils.h"
#include "chrome/test/base/test_switches.h"
#include "chrome/test/base/tracing.h"
#include "content/public/browser/render_process_host.h"
#include "content/public/browser/render_view_host.h"
#include "content/public/common/content_switches.h"
#include "extensions/common/feature_switch.h"
#include "extensions/common/features/base_feature_provider.h"
#include "extensions/common/features/complex_feature.h"
#include "extensions/common/features/feature.h"
#include "extensions/common/features/simple_feature.h"
#include "extensions/common/switches.h"
#include "extensions/test/extension_test_message_listener.h"
#include "media/base/audio_bus.h"
#include "media/base/video_frame.h"
#include "media/cast/cast_config.h"
#include "media/cast/cast_environment.h"
#include "media/cast/test/utility/audio_utility.h"
#include "media/cast/test/utility/barcode.h"
#include "media/cast/test/utility/default_config.h"
#include "media/cast/test/utility/in_process_receiver.h"
#include "media/cast/test/utility/standalone_cast_environment.h"
#include "media/cast/test/utility/udp_proxy.h"
#include "net/base/ip_endpoint.h"
#include "net/base/net_errors.h"
#include "net/base/rand_callback.h"
#include "net/udp/udp_server_socket.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "testing/perf/perf_test.h"
#include "ui/compositor/compositor_switches.h"
#include "ui/gl/gl_switches.h"
namespace {
const char kExtensionId[] = "ddchlicdkolnonkihahngkmmmjnjlkkf";
// Skip a few events from the beginning.
static const size_t kSkipEvents = 3;
enum TestFlags {
kUseGpu = 1 << 0, // Only execute test if --enable-gpu was given
// on the command line. This is required for
// tests that run on GPU.
kDisableVsync = 1 << 1, // Do not limit framerate to vertical refresh.
// when on GPU, nor to 60hz when not on GPU.
kSmallWindow = 1 << 2, // 1 = 800x600, 0 = 2000x1000
k24fps = 1 << 3, // use 24 fps video
k30fps = 1 << 4, // use 30 fps video
k60fps = 1 << 5, // use 60 fps video
kProxyWifi = 1 << 6, // Run UDP through UDPProxy wifi profile
kProxyBad = 1 << 7, // Run UDP through UDPProxy bad profile
kSlowClock = 1 << 8, // Receiver clock is 10 seconds slow
kFastClock = 1 << 9, // Receiver clock is 10 seconds fast
};
class SkewedTickClock : public base::DefaultTickClock {
public:
explicit SkewedTickClock(const base::TimeDelta& delta) : delta_(delta) {
}
base::TimeTicks NowTicks() override {
return DefaultTickClock::NowTicks() + delta_;
}
private:
base::TimeDelta delta_;
};
class SkewedCastEnvironment : public media::cast::StandaloneCastEnvironment {
public:
explicit SkewedCastEnvironment(const base::TimeDelta& delta) :
StandaloneCastEnvironment() {
clock_.reset(new SkewedTickClock(delta));
}
protected:
~SkewedCastEnvironment() override {}
};
// We log one of these for each call to OnAudioFrame/OnVideoFrame.
struct TimeData {
TimeData(uint16_t frame_no_, base::TimeTicks render_time_)
: frame_no(frame_no_), render_time(render_time_) {}
// The unit here is video frames, for audio data there can be duplicates.
// This was decoded from the actual audio/video data.
uint16_t frame_no;
// This is when we should play this data, according to the sender.
base::TimeTicks render_time;
};
// TODO(hubbe): Move to media/cast to use for offline log analysis.
class MeanAndError {
public:
MeanAndError() {}
explicit MeanAndError(const std::vector<double>& values) {
double sum = 0.0;
double sqr_sum = 0.0;
num_values = values.size();
if (num_values) {
for (size_t i = 0; i < num_values; i++) {
sum += values[i];
sqr_sum += values[i] * values[i];
}
mean = sum / num_values;
std_dev = sqrt(std::max(0.0, num_values * sqr_sum - sum * sum)) /
num_values;
}
}
std::string AsString() const {
return base::StringPrintf("%f,%f", mean, std_dev);
}
void Print(const std::string& measurement,
const std::string& modifier,
const std::string& trace,
const std::string& unit) {
if (num_values >= 20) {
perf_test::PrintResultMeanAndError(measurement,
modifier,
trace,
AsString(),
unit,
true);
} else {
LOG(ERROR) << "Not enough events for "
<< measurement << modifier << " " << trace;
}
}
size_t num_values;
double mean;
double std_dev;
};
// This function checks how smooth the data in |data| is.
// It computes the average error of deltas and the average delta.
// If data[x] == x * A + B, then this function returns zero.
// The unit is milliseconds.
static MeanAndError AnalyzeJitter(const std::vector<TimeData>& data) {
CHECK_GT(data.size(), 1UL);
VLOG(0) << "Jitter analyzis on " << data.size() << " values.";
std::vector<double> deltas;
double sum = 0.0;
for (size_t i = 1; i < data.size(); i++) {
double delta = (data[i].render_time -
data[i - 1].render_time).InMillisecondsF();
deltas.push_back(delta);
sum += delta;
}
double mean = sum / deltas.size();
for (size_t i = 0; i < deltas.size(); i++) {
deltas[i] = fabs(mean - deltas[i]);
}
return MeanAndError(deltas);
}
// An in-process Cast receiver that examines the audio/video frames being
// received and logs some data about each received audio/video frame.
class TestPatternReceiver : public media::cast::InProcessReceiver {
public:
explicit TestPatternReceiver(
const scoped_refptr<media::cast::CastEnvironment>& cast_environment,
const net::IPEndPoint& local_end_point)
: InProcessReceiver(cast_environment,
local_end_point,
net::IPEndPoint(),
media::cast::GetDefaultAudioReceiverConfig(),
media::cast::GetDefaultVideoReceiverConfig()) {
}
typedef std::map<uint16_t, base::TimeTicks> TimeMap;
// Build a map from frame ID (as encoded in the audio and video data)
// to the rtp timestamp for that frame. Note that there will be multiple
// audio frames which all have the same frame ID. When that happens we
// want the minimum rtp timestamp, because that audio frame is supposed
// to play at the same time that the corresponding image is presented.
void MapFrameTimes(const std::vector<TimeData>& events, TimeMap* map) {
for (size_t i = kSkipEvents; i < events.size(); i++) {
base::TimeTicks& frame_tick = (*map)[events[i].frame_no];
if (frame_tick.is_null()) {
frame_tick = events[i].render_time;
} else {
frame_tick = std::min(events[i].render_time, frame_tick);
}
}
}
void Analyze(const std::string& name, const std::string& modifier) {
// First, find the minimum rtp timestamp for each audio and video frame.
// Note that the data encoded in the audio stream contains video frame
// numbers. So in a 30-fps video stream, there will be 1/30s of "1", then
// 1/30s of "2", etc.
TimeMap audio_frame_times, video_frame_times;
MapFrameTimes(audio_events_, &audio_frame_times);
MapFrameTimes(video_events_, &video_frame_times);
std::vector<double> deltas;
for (TimeMap::const_iterator i = audio_frame_times.begin();
i != audio_frame_times.end();
++i) {
TimeMap::const_iterator j = video_frame_times.find(i->first);
if (j != video_frame_times.end()) {
deltas.push_back((i->second - j->second).InMillisecondsF());
}
}
// Close to zero is better. (can be negative)
MeanAndError(deltas).Print(name, modifier, "av_sync", "ms");
// lower is better.
AnalyzeJitter(audio_events_).Print(name, modifier, "audio_jitter", "ms");
// lower is better.
AnalyzeJitter(video_events_).Print(name, modifier, "video_jitter", "ms");
}
private:
// Invoked by InProcessReceiver for each received audio frame.
void OnAudioFrame(scoped_ptr<media::AudioBus> audio_frame,
const base::TimeTicks& playout_time,
bool is_continuous) override {
CHECK(cast_env()->CurrentlyOn(media::cast::CastEnvironment::MAIN));
if (audio_frame->frames() <= 0) {
NOTREACHED() << "OnAudioFrame called with no samples?!?";
return;
}
// Note: This is the number of the video frame that this audio belongs to.
uint16_t frame_no;
if (media::cast::DecodeTimestamp(audio_frame->channel(0),
audio_frame->frames(),
&frame_no)) {
audio_events_.push_back(TimeData(frame_no, playout_time));
} else {
VLOG(0) << "Failed to decode audio timestamp!";
}
}
void OnVideoFrame(const scoped_refptr<media::VideoFrame>& video_frame,
const base::TimeTicks& render_time,
bool is_continuous) override {
CHECK(cast_env()->CurrentlyOn(media::cast::CastEnvironment::MAIN));
TRACE_EVENT_INSTANT1(
"mirroring", "TestPatternReceiver::OnVideoFrame",
TRACE_EVENT_SCOPE_THREAD,
"render_time", render_time.ToInternalValue());
uint16_t frame_no;
if (media::cast::test::DecodeBarcode(video_frame, &frame_no)) {
video_events_.push_back(TimeData(frame_no, render_time));
} else {
VLOG(0) << "Failed to decode barcode!";
}
}
std::vector<TimeData> audio_events_;
std::vector<TimeData> video_events_;
DISALLOW_COPY_AND_ASSIGN(TestPatternReceiver);
};
class CastV2PerformanceTest
: public ExtensionApiTest,
public testing::WithParamInterface<int> {
public:
CastV2PerformanceTest() {}
bool HasFlag(TestFlags flag) const {
return (GetParam() & flag) == flag;
}
bool IsGpuAvailable() const {
return base::CommandLine::ForCurrentProcess()->HasSwitch("enable-gpu");
}
std::string GetSuffixForTestFlags() {
std::string suffix;
if (HasFlag(kUseGpu))
suffix += "_gpu";
if (HasFlag(kDisableVsync))
suffix += "_novsync";
if (HasFlag(kSmallWindow))
suffix += "_small";
if (HasFlag(k24fps))
suffix += "_24fps";
if (HasFlag(k30fps))
suffix += "_30fps";
if (HasFlag(k60fps))
suffix += "_60fps";
if (HasFlag(kProxyWifi))
suffix += "_wifi";
if (HasFlag(kProxyBad))
suffix += "_bad";
if (HasFlag(kSlowClock))
suffix += "_slow";
if (HasFlag(kFastClock))
suffix += "_fast";
return suffix;
}
int getfps() {
if (HasFlag(k24fps))
return 24;
if (HasFlag(k30fps))
return 30;
if (HasFlag(k60fps))
return 60;
NOTREACHED();
return 0;
}
net::IPEndPoint GetFreeLocalPort() {
// Determine a unused UDP port for the in-process receiver to listen on.
// Method: Bind a UDP socket on port 0, and then check which port the
// operating system assigned to it.
net::IPAddressNumber localhost;
localhost.push_back(127);
localhost.push_back(0);
localhost.push_back(0);
localhost.push_back(1);
scoped_ptr<net::UDPServerSocket> receive_socket(
new net::UDPServerSocket(NULL, net::NetLog::Source()));
receive_socket->AllowAddressReuse();
CHECK_EQ(net::OK, receive_socket->Listen(net::IPEndPoint(localhost, 0)));
net::IPEndPoint endpoint;
CHECK_EQ(net::OK, receive_socket->GetLocalAddress(&endpoint));
return endpoint;
}
void SetUp() override {
EnablePixelOutput();
ExtensionApiTest::SetUp();
}
void SetUpCommandLine(base::CommandLine* command_line) override {
// Some of the tests may launch http requests through JSON or AJAX
// which causes a security error (cross domain request) when the page
// is loaded from the local file system ( file:// ). The following switch
// fixes that error.
command_line->AppendSwitch(switches::kAllowFileAccessFromFiles);
if (HasFlag(kSmallWindow)) {
command_line->AppendSwitchASCII(switches::kWindowSize, "800,600");
} else {
command_line->AppendSwitchASCII(switches::kWindowSize, "2000,1500");
}
if (!HasFlag(kUseGpu))
command_line->AppendSwitch(switches::kDisableGpu);
if (HasFlag(kDisableVsync))
command_line->AppendSwitch(switches::kDisableGpuVsync);
command_line->AppendSwitchASCII(
extensions::switches::kWhitelistedExtensionID,
kExtensionId);
ExtensionApiTest::SetUpCommandLine(command_line);
}
void GetTraceEvents(trace_analyzer::TraceAnalyzer* analyzer,
const std::string& event_name,
trace_analyzer::TraceEventVector* events) {
trace_analyzer::Query query =
trace_analyzer::Query::EventNameIs(event_name) &&
(trace_analyzer::Query::EventPhaseIs(TRACE_EVENT_PHASE_BEGIN) ||
trace_analyzer::Query::EventPhaseIs(TRACE_EVENT_PHASE_ASYNC_BEGIN) ||
trace_analyzer::Query::EventPhaseIs(TRACE_EVENT_PHASE_FLOW_BEGIN) ||
trace_analyzer::Query::EventPhaseIs(TRACE_EVENT_PHASE_INSTANT) ||
trace_analyzer::Query::EventPhaseIs(TRACE_EVENT_PHASE_COMPLETE));
analyzer->FindEvents(query, events);
}
// The key contains the name of the argument and the argument.
typedef std::pair<std::string, double> EventMapKey;
typedef std::map<EventMapKey, const trace_analyzer::TraceEvent*> EventMap;
// Make events findable by their arguments, for instance, if an
// event has a "timestamp": 238724 argument, the map will contain
// pair<"timestamp", 238724> -> &event. All arguments are indexed.
void IndexEvents(trace_analyzer::TraceAnalyzer* analyzer,
const std::string& event_name,
EventMap* event_map) {
trace_analyzer::TraceEventVector events;
GetTraceEvents(analyzer, event_name, &events);
for (size_t i = 0; i < events.size(); i++) {
std::map<std::string, double>::const_iterator j;
for (j = events[i]->arg_numbers.begin();
j != events[i]->arg_numbers.end();
++j) {
(*event_map)[*j] = events[i];
}
}
}
// Look up an event in |event_map|. The return event will have the same
// value for the argument |key_name| as |prev_event|. Note that if
// the |key_name| is "time_delta", then we allow some fuzzy logic since
// the time deltas are truncated to milliseconds in the code.
const trace_analyzer::TraceEvent* FindNextEvent(
const EventMap& event_map,
std::vector<const trace_analyzer::TraceEvent*> prev_events,
std::string key_name) {
EventMapKey key;
for (size_t i = prev_events.size(); i;) {
--i;
std::map<std::string, double>::const_iterator j =
prev_events[i]->arg_numbers.find(key_name);
if (j != prev_events[i]->arg_numbers.end()) {
key = *j;
break;
}
}
EventMap::const_iterator i = event_map.lower_bound(key);
if (i == event_map.end())
return NULL;
if (i->first.second == key.second)
return i->second;
if (key_name != "time_delta")
return NULL;
if (fabs(i->first.second - key.second) < 1000)
return i->second;
if (i == event_map.begin())
return NULL;
i--;
if (fabs(i->first.second - key.second) < 1000)
return i->second;
return NULL;
}
// Given a vector of vector of data, extract the difference between
// two columns (|col_a| and |col_b|) and output the result as a
// performance metric.
void OutputMeasurement(const std::string& test_name,
const std::vector<std::vector<double> > data,
const std::string& measurement_name,
int col_a,
int col_b) {
std::vector<double> tmp;
for (size_t i = 0; i < data.size(); i++) {
tmp.push_back((data[i][col_b] - data[i][col_a]) / 1000.0);
}
return MeanAndError(tmp).Print(test_name,
GetSuffixForTestFlags(),
measurement_name,
"ms");
}
// Analyzing latency is hard, because there is no unifying identifier for
// frames throughout the code. At first, we have a capture timestamp, which
// gets converted to a time delta, then back to a timestamp. Once it enters
// the cast library it gets converted to an rtp_timestamp, and when it leaves
// the cast library, all we have is the render_time.
//
// To be able to follow the frame throughout all this, we insert TRACE
// calls that tracks each conversion as it happens. Then we extract all
// these events and link them together.
void AnalyzeLatency(const std::string& test_name,
trace_analyzer::TraceAnalyzer* analyzer) {
EventMap onbuffer, sink, inserted, encoded, transmitted, decoded, done;
IndexEvents(analyzer, "OnBufferReceived", &onbuffer);
IndexEvents(analyzer, "MediaStreamVideoSink::OnVideoFrame", &sink);
IndexEvents(analyzer, "InsertRawVideoFrame", &inserted);
IndexEvents(analyzer, "VideoFrameEncoded", &encoded);
IndexEvents(analyzer, "PullEncodedVideoFrame", &transmitted);
IndexEvents(analyzer, "FrameDecoded", &decoded);
IndexEvents(analyzer, "TestPatternReceiver::OnVideoFrame", &done);
std::vector<std::pair<EventMap*, std::string> > event_maps;
event_maps.push_back(std::make_pair(&onbuffer, "timestamp"));
event_maps.push_back(std::make_pair(&sink, "time_delta"));
event_maps.push_back(std::make_pair(&inserted, "timestamp"));
event_maps.push_back(std::make_pair(&encoded, "rtp_timestamp"));
event_maps.push_back(std::make_pair(&transmitted, "rtp_timestamp"));
event_maps.push_back(std::make_pair(&decoded, "rtp_timestamp"));
event_maps.push_back(std::make_pair(&done, "render_time"));
trace_analyzer::TraceEventVector capture_events;
GetTraceEvents(analyzer, "Capture" , &capture_events);
EXPECT_GT(capture_events.size(), 0UL);
std::vector<std::vector<double> > traced_frames;
for (size_t i = kSkipEvents; i < capture_events.size(); i++) {
std::vector<double> times;
const trace_analyzer::TraceEvent *event = capture_events[i];
times.push_back(event->timestamp); // begin capture
event = event->other_event;
if (!event) {
continue;
}
times.push_back(event->timestamp); // end capture (with timestamp)
std::vector<const trace_analyzer::TraceEvent*> prev_events;
prev_events.push_back(event);
for (size_t j = 0; j < event_maps.size(); j++) {
event = FindNextEvent(*event_maps[j].first,
prev_events,
event_maps[j].second);
if (!event) {
break;
}
prev_events.push_back(event);
times.push_back(event->timestamp);
}
if (event) {
// Successfully traced frame from beginning to end
traced_frames.push_back(times);
}
}
// 0 = capture begin
// 1 = capture end
// 2 = onbuffer
// 3 = sink
// 4 = inserted
// 5 = encoded
// 6 = transmitted
// 7 = decoded
// 8 = done
// Lower is better for all of these.
OutputMeasurement(test_name, traced_frames, "total_latency", 0, 8);
OutputMeasurement(test_name, traced_frames, "capture_duration", 0, 1);
OutputMeasurement(test_name, traced_frames, "send_to_renderer", 1, 3);
OutputMeasurement(test_name, traced_frames, "encode", 3, 5);
OutputMeasurement(test_name, traced_frames, "transmit", 5, 6);
OutputMeasurement(test_name, traced_frames, "decode", 6, 7);
OutputMeasurement(test_name, traced_frames, "cast_latency", 3, 8);
}
MeanAndError AnalyzeTraceDistance(trace_analyzer::TraceAnalyzer* analyzer,
const std::string& event_name) {
trace_analyzer::TraceEventVector events;
GetTraceEvents(analyzer, event_name, &events);
std::vector<double> deltas;
for (size_t i = kSkipEvents + 1; i < events.size(); ++i) {
double delta_micros = events[i]->timestamp - events[i - 1]->timestamp;
deltas.push_back(delta_micros / 1000.0);
}
return MeanAndError(deltas);
}
void RunTest(const std::string& test_name) {
if (HasFlag(kUseGpu) && !IsGpuAvailable()) {
LOG(WARNING) <<
"Test skipped: requires gpu. Pass --enable-gpu on the command "
"line if use of GPU is desired.";
return;
}
ASSERT_EQ(1,
(HasFlag(k24fps) ? 1 : 0) +
(HasFlag(k30fps) ? 1 : 0) +
(HasFlag(k60fps) ? 1 : 0));
net::IPEndPoint receiver_end_point = GetFreeLocalPort();
// Start the in-process receiver that examines audio/video for the expected
// test patterns.
base::TimeDelta delta = base::TimeDelta::FromSeconds(0);
if (HasFlag(kFastClock)) {
delta = base::TimeDelta::FromSeconds(10);
}
if (HasFlag(kSlowClock)) {
delta = base::TimeDelta::FromSeconds(-10);
}
scoped_refptr<media::cast::StandaloneCastEnvironment> cast_environment(
new SkewedCastEnvironment(delta));
TestPatternReceiver* const receiver =
new TestPatternReceiver(cast_environment, receiver_end_point);
receiver->Start();
scoped_ptr<media::cast::test::UDPProxy> udp_proxy;
if (HasFlag(kProxyWifi) || HasFlag(kProxyBad)) {
net::IPEndPoint proxy_end_point = GetFreeLocalPort();
if (HasFlag(kProxyWifi)) {
udp_proxy = media::cast::test::UDPProxy::Create(
proxy_end_point, receiver_end_point,
media::cast::test::WifiNetwork(), media::cast::test::WifiNetwork(),
NULL);
} else if (HasFlag(kProxyBad)) {
udp_proxy = media::cast::test::UDPProxy::Create(
proxy_end_point, receiver_end_point,
media::cast::test::BadNetwork(), media::cast::test::BadNetwork(),
NULL);
}
receiver_end_point = proxy_end_point;
}
std::string json_events;
ASSERT_TRUE(tracing::BeginTracing(
"test_fps,mirroring,gpu.capture,cast_perf_test"));
const std::string page_url = base::StringPrintf(
"performance%d.html?port=%d",
getfps(),
receiver_end_point.port());
ASSERT_TRUE(RunExtensionSubtest("cast_streaming", page_url)) << message_;
ASSERT_TRUE(tracing::EndTracing(&json_events));
receiver->Stop();
// Stop all threads, removes the need for synchronization when analyzing
// the data.
cast_environment->Shutdown();
scoped_ptr<trace_analyzer::TraceAnalyzer> analyzer;
analyzer.reset(trace_analyzer::TraceAnalyzer::Create(json_events));
analyzer->AssociateAsyncBeginEndEvents();
MeanAndError frame_data = AnalyzeTraceDistance(
analyzer.get(),
"OnSwapCompositorFrame");
EXPECT_GT(frame_data.num_values, 0UL);
// Lower is better.
frame_data.Print(test_name,
GetSuffixForTestFlags(),
"time_between_frames",
"ms");
// This prints out the average time between capture events.
// As the capture frame rate is capped at 30fps, this score
// cannot get any better than (lower) 33.33 ms.
MeanAndError capture_data = AnalyzeTraceDistance(analyzer.get(), "Capture");
// Lower is better.
capture_data.Print(test_name,
GetSuffixForTestFlags(),
"time_between_captures",
"ms");
receiver->Analyze(test_name, GetSuffixForTestFlags());
AnalyzeLatency(test_name, analyzer.get());
}
};
} // namespace
IN_PROC_BROWSER_TEST_P(CastV2PerformanceTest, Performance) {
RunTest("CastV2Performance");
}
// Note: First argument is optional and intentionally left blank.
// (it's a prefix for the generated test cases)
INSTANTIATE_TEST_CASE_P(
,
CastV2PerformanceTest,
testing::Values(
kUseGpu | k24fps,
kUseGpu | k30fps,
kUseGpu | k60fps,
kUseGpu | k24fps | kDisableVsync,
kUseGpu | k30fps | kProxyWifi,
kUseGpu | k30fps | kProxyBad,
kUseGpu | k30fps | kSlowClock,
kUseGpu | k30fps | kFastClock));
|