1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
|
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "chrome/browser/internal_auth.h"
#include <algorithm>
#include <deque>
#include "base/base64.h"
#include "base/lazy_instance.h"
#include "base/rand_util.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_split.h"
#include "base/strings/string_util.h"
#include "base/synchronization/lock.h"
#include "base/threading/thread_checker.h"
#include "base/time/time.h"
#include "base/values.h"
#include "crypto/hmac.h"
namespace {
typedef std::map<std::string, std::string> VarValueMap;
// Size of a tick in microseconds. This determines upper bound for average
// number of passports generated per time unit. This bound equals to
// (kMicrosecondsPerSecond / TickUs) calls per second.
const int64 kTickUs = 10000;
// Verification window size in ticks; that means any passport expires in
// (kVerificationWindowTicks * TickUs / kMicrosecondsPerSecond) seconds.
const int kVerificationWindowTicks = 2000;
// Generation window determines how well we are able to cope with bursts of
// GeneratePassport calls those exceed upper bound on average speed.
const int kGenerationWindowTicks = 20;
// Makes no sense to compare other way round.
COMPILE_ASSERT(kGenerationWindowTicks <= kVerificationWindowTicks,
makes_no_sense_to_have_generation_window_larger_than_verification_one);
// We are not optimized for high value of kGenerationWindowTicks.
COMPILE_ASSERT(kGenerationWindowTicks < 30, too_large_generation_window);
// Regenerate key after this number of ticks.
const int kKeyRegenerationSoftTicks = 500000;
// Reject passports if key has not been regenerated in that number of ticks.
const int kKeyRegenerationHardTicks = kKeyRegenerationSoftTicks * 2;
// Limit for number of accepted var=value pairs. Feel free to bump this limit
// higher once needed.
const size_t kVarsLimit = 16;
// Limit for length of caller-supplied strings. Feel free to bump this limit
// higher once needed.
const size_t kStringLengthLimit = 512;
// Character used as a separator for construction of message to take HMAC of.
// It is critical to validate all caller-supplied data (used to construct
// message) to be clear of this separator because it could allow attacks.
const char kItemSeparator = '\n';
// Character used for var=value separation.
const char kVarValueSeparator = '=';
const size_t kKeySizeInBytes = 128 / 8;
const size_t kHMACSizeInBytes = 256 / 8;
// Length of base64 string required to encode given number of raw octets.
#define BASE64_PER_RAW(X) (X > 0 ? ((X - 1) / 3 + 1) * 4 : 0)
// Size of decimal string representing 64-bit tick.
const size_t kTickStringLength = 20;
// A passport consists of 2 parts: HMAC and tick.
const size_t kPassportSize =
BASE64_PER_RAW(kHMACSizeInBytes) + kTickStringLength;
int64 GetCurrentTick() {
int64 tick = base::Time::Now().ToInternalValue() / kTickUs;
if (tick < kVerificationWindowTicks ||
tick < kKeyRegenerationHardTicks ||
tick > kint64max - kKeyRegenerationHardTicks) {
return 0;
}
return tick;
}
bool IsDomainSane(const std::string& domain) {
return !domain.empty() &&
domain.size() <= kStringLengthLimit &&
base::IsStringUTF8(domain) &&
domain.find_first_of(kItemSeparator) == std::string::npos;
}
bool IsVarSane(const std::string& var) {
static const char kAllowedChars[] =
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"abcdefghijklmnopqrstuvwxyz"
"0123456789"
"_";
COMPILE_ASSERT(
sizeof(kAllowedChars) == 26 + 26 + 10 + 1 + 1, some_mess_with_chars);
// We must not allow kItemSeparator in anything used as an input to construct
// message to sign.
DCHECK(std::find(kAllowedChars, kAllowedChars + arraysize(kAllowedChars),
kItemSeparator) == kAllowedChars + arraysize(kAllowedChars));
DCHECK(std::find(kAllowedChars, kAllowedChars + arraysize(kAllowedChars),
kVarValueSeparator) == kAllowedChars + arraysize(kAllowedChars));
return !var.empty() &&
var.size() <= kStringLengthLimit &&
base::IsStringASCII(var) &&
var.find_first_not_of(kAllowedChars) == std::string::npos &&
!IsAsciiDigit(var[0]);
}
bool IsValueSane(const std::string& value) {
return value.size() <= kStringLengthLimit &&
base::IsStringUTF8(value) &&
value.find_first_of(kItemSeparator) == std::string::npos;
}
bool IsVarValueMapSane(const VarValueMap& map) {
if (map.size() > kVarsLimit)
return false;
for (VarValueMap::const_iterator it = map.begin(); it != map.end(); ++it) {
const std::string& var = it->first;
const std::string& value = it->second;
if (!IsVarSane(var) || !IsValueSane(value))
return false;
}
return true;
}
void ConvertVarValueMapToBlob(const VarValueMap& map, std::string* out) {
out->clear();
DCHECK(IsVarValueMapSane(map));
for (VarValueMap::const_iterator it = map.begin(); it != map.end(); ++it)
*out += it->first + kVarValueSeparator + it->second + kItemSeparator;
}
void CreatePassport(const std::string& domain,
const VarValueMap& map,
int64 tick,
const crypto::HMAC* engine,
std::string* out) {
DCHECK(engine);
DCHECK(out);
DCHECK(IsDomainSane(domain));
DCHECK(IsVarValueMapSane(map));
out->clear();
std::string result(kPassportSize, '0');
std::string blob;
blob = domain + kItemSeparator;
std::string tmp;
ConvertVarValueMapToBlob(map, &tmp);
blob += tmp + kItemSeparator + base::Uint64ToString(tick);
std::string hmac;
unsigned char* hmac_data = reinterpret_cast<unsigned char*>(
WriteInto(&hmac, kHMACSizeInBytes + 1));
if (!engine->Sign(blob, hmac_data, kHMACSizeInBytes)) {
NOTREACHED();
return;
}
std::string hmac_base64;
base::Base64Encode(hmac, &hmac_base64);
if (hmac_base64.size() != BASE64_PER_RAW(kHMACSizeInBytes)) {
NOTREACHED();
return;
}
DCHECK(hmac_base64.size() < result.size());
std::copy(hmac_base64.begin(), hmac_base64.end(), result.begin());
std::string tick_decimal = base::Uint64ToString(tick);
DCHECK(tick_decimal.size() <= kTickStringLength);
std::copy(
tick_decimal.begin(),
tick_decimal.end(),
result.begin() + kPassportSize - tick_decimal.size());
out->swap(result);
}
} // namespace
namespace chrome {
class InternalAuthVerificationService {
public:
InternalAuthVerificationService()
: key_change_tick_(0),
dark_tick_(0) {
}
bool VerifyPassport(
const std::string& passport,
const std::string& domain,
const VarValueMap& map) {
int64 current_tick = GetCurrentTick();
int64 tick = PreVerifyPassport(passport, domain, current_tick);
if (tick == 0)
return false;
if (!IsVarValueMapSane(map))
return false;
std::string reference_passport;
CreatePassport(domain, map, tick, engine_.get(), &reference_passport);
if (passport != reference_passport) {
// Consider old key.
if (key_change_tick_ + get_verification_window_ticks() < tick) {
return false;
}
if (old_key_.empty() || old_engine_ == NULL)
return false;
CreatePassport(domain, map, tick, old_engine_.get(), &reference_passport);
if (passport != reference_passport)
return false;
}
// Record used tick to prevent reuse.
std::deque<int64>::iterator it = std::lower_bound(
used_ticks_.begin(), used_ticks_.end(), tick);
DCHECK(it == used_ticks_.end() || *it != tick);
used_ticks_.insert(it, tick);
// Consider pruning |used_ticks_|.
if (used_ticks_.size() > 50) {
dark_tick_ = std::max(dark_tick_,
current_tick - get_verification_window_ticks());
used_ticks_.erase(
used_ticks_.begin(),
std::lower_bound(used_ticks_.begin(), used_ticks_.end(),
dark_tick_ + 1));
}
return true;
}
void ChangeKey(const std::string& key) {
old_key_.swap(key_);
key_.clear();
old_engine_.swap(engine_);
engine_.reset(NULL);
if (key.size() != kKeySizeInBytes)
return;
scoped_ptr<crypto::HMAC> new_engine(
new crypto::HMAC(crypto::HMAC::SHA256));
if (!new_engine->Init(key))
return;
engine_.swap(new_engine);
key_ = key;
key_change_tick_ = GetCurrentTick();
}
private:
static int get_verification_window_ticks() {
return InternalAuthVerification::get_verification_window_ticks();
}
// Returns tick bound to given passport on success or zero on failure.
int64 PreVerifyPassport(
const std::string& passport,
const std::string& domain,
int64 current_tick) {
if (passport.size() != kPassportSize ||
!base::IsStringASCII(passport) ||
!IsDomainSane(domain) ||
current_tick <= dark_tick_ ||
current_tick > key_change_tick_ + kKeyRegenerationHardTicks ||
key_.empty() ||
engine_ == NULL) {
return 0;
}
// Passport consists of 2 parts: first hmac and then tick.
std::string tick_decimal =
passport.substr(BASE64_PER_RAW(kHMACSizeInBytes));
DCHECK(tick_decimal.size() == kTickStringLength);
int64 tick = 0;
if (!base::StringToInt64(tick_decimal, &tick) ||
tick <= dark_tick_ ||
tick > key_change_tick_ + kKeyRegenerationHardTicks ||
tick < current_tick - get_verification_window_ticks() ||
std::binary_search(used_ticks_.begin(), used_ticks_.end(), tick)) {
return 0;
}
return tick;
}
// Current key.
std::string key_;
// We keep previous key in order to be able to verify passports during
// regeneration time. Keys are regenerated on a regular basis.
std::string old_key_;
// Corresponding HMAC engines.
scoped_ptr<crypto::HMAC> engine_;
scoped_ptr<crypto::HMAC> old_engine_;
// Tick at a time of recent key regeneration.
int64 key_change_tick_;
// Keeps track of ticks of successfully verified passports to prevent their
// reuse. Size of this container is kept reasonably low by purging outdated
// ticks.
std::deque<int64> used_ticks_;
// Some ticks before |dark_tick_| were purged from |used_ticks_| container.
// That means that we must not trust any tick less than or equal to dark tick.
int64 dark_tick_;
DISALLOW_COPY_AND_ASSIGN(InternalAuthVerificationService);
};
} // namespace chrome
namespace {
static base::LazyInstance<chrome::InternalAuthVerificationService>
g_verification_service = LAZY_INSTANCE_INITIALIZER;
static base::LazyInstance<base::Lock>::Leaky
g_verification_service_lock = LAZY_INSTANCE_INITIALIZER;
} // namespace
namespace chrome {
class InternalAuthGenerationService : public base::ThreadChecker {
public:
InternalAuthGenerationService() : key_regeneration_tick_(0) {
GenerateNewKey();
}
void GenerateNewKey() {
DCHECK(CalledOnValidThread());
scoped_ptr<crypto::HMAC> new_engine(new crypto::HMAC(crypto::HMAC::SHA256));
std::string key = base::RandBytesAsString(kKeySizeInBytes);
if (!new_engine->Init(key))
return;
engine_.swap(new_engine);
key_regeneration_tick_ = GetCurrentTick();
g_verification_service.Get().ChangeKey(key);
std::fill(key.begin(), key.end(), 0);
}
// Returns zero on failure.
int64 GetUnusedTick(const std::string& domain) {
DCHECK(CalledOnValidThread());
if (engine_ == NULL) {
NOTREACHED();
return 0;
}
if (!IsDomainSane(domain))
return 0;
int64 current_tick = GetCurrentTick();
if (!used_ticks_.empty() && used_ticks_.back() > current_tick)
current_tick = used_ticks_.back();
for (bool first_iteration = true;; first_iteration = false) {
if (current_tick < key_regeneration_tick_ + kKeyRegenerationHardTicks)
break;
if (!first_iteration)
return 0;
GenerateNewKey();
}
// Forget outdated ticks if any.
used_ticks_.erase(
used_ticks_.begin(),
std::lower_bound(used_ticks_.begin(), used_ticks_.end(),
current_tick - kGenerationWindowTicks + 1));
DCHECK(used_ticks_.size() <= kGenerationWindowTicks + 0u);
if (used_ticks_.size() >= kGenerationWindowTicks + 0u) {
// Average speed of GeneratePassport calls exceeds limit.
return 0;
}
for (int64 tick = current_tick;
tick > current_tick - kGenerationWindowTicks;
--tick) {
int idx = static_cast<int>(used_ticks_.size()) -
static_cast<int>(current_tick - tick + 1);
if (idx < 0 || used_ticks_[idx] != tick) {
DCHECK(used_ticks_.end() ==
std::find(used_ticks_.begin(), used_ticks_.end(), tick));
return tick;
}
}
NOTREACHED();
return 0;
}
std::string GeneratePassport(
const std::string& domain, const VarValueMap& map, int64 tick) {
DCHECK(CalledOnValidThread());
if (tick == 0) {
tick = GetUnusedTick(domain);
if (tick == 0)
return std::string();
}
if (!IsVarValueMapSane(map))
return std::string();
std::string result;
CreatePassport(domain, map, tick, engine_.get(), &result);
used_ticks_.insert(
std::lower_bound(used_ticks_.begin(), used_ticks_.end(), tick), tick);
return result;
}
private:
static int get_verification_window_ticks() {
return InternalAuthVerification::get_verification_window_ticks();
}
scoped_ptr<crypto::HMAC> engine_;
int64 key_regeneration_tick_;
std::deque<int64> used_ticks_;
DISALLOW_COPY_AND_ASSIGN(InternalAuthGenerationService);
};
} // namespace chrome
namespace {
static base::LazyInstance<chrome::InternalAuthGenerationService>
g_generation_service = LAZY_INSTANCE_INITIALIZER;
} // namespace
namespace chrome {
// static
bool InternalAuthVerification::VerifyPassport(
const std::string& passport,
const std::string& domain,
const VarValueMap& var_value_map) {
base::AutoLock alk(g_verification_service_lock.Get());
return g_verification_service.Get().VerifyPassport(
passport, domain, var_value_map);
}
// static
void InternalAuthVerification::ChangeKey(const std::string& key) {
base::AutoLock alk(g_verification_service_lock.Get());
g_verification_service.Get().ChangeKey(key);
};
// static
int InternalAuthVerification::get_verification_window_ticks() {
int candidate = kVerificationWindowTicks;
if (verification_window_seconds_ > 0)
candidate = verification_window_seconds_ *
base::Time::kMicrosecondsPerSecond / kTickUs;
return std::max(1, std::min(candidate, kVerificationWindowTicks));
}
int InternalAuthVerification::verification_window_seconds_ = 0;
// static
std::string InternalAuthGeneration::GeneratePassport(
const std::string& domain, const VarValueMap& var_value_map) {
return g_generation_service.Get().GeneratePassport(domain, var_value_map, 0);
}
// static
void InternalAuthGeneration::GenerateNewKey() {
g_generation_service.Get().GenerateNewKey();
}
} // namespace chrome
|