1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
|
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "chrome/browser/prefs/pref_hash_calculator.h"
#include <string>
#include "base/bind.h"
#include "base/memory/scoped_ptr.h"
#include "base/strings/string_util.h"
#include "base/values.h"
#include "chrome/browser/prefs/tracked/pref_hash_calculator_helper.h"
#include "testing/gtest/include/gtest/gtest.h"
TEST(PrefHashCalculatorTest, TestCurrentAlgorithm) {
base::StringValue string_value_1("string value 1");
base::StringValue string_value_2("string value 2");
base::DictionaryValue dictionary_value_1;
dictionary_value_1.SetInteger("int value", 1);
dictionary_value_1.Set("nested empty map", new base::DictionaryValue);
base::DictionaryValue dictionary_value_1_equivalent;
dictionary_value_1_equivalent.SetInteger("int value", 1);
base::DictionaryValue dictionary_value_2;
dictionary_value_2.SetInteger("int value", 2);
PrefHashCalculator calc1("seed1", "deviceid");
PrefHashCalculator calc1_dup("seed1", "deviceid");
PrefHashCalculator calc2("seed2", "deviceid");
PrefHashCalculator calc3("seed1", "deviceid2");
// Two calculators with same seed produce same hash.
ASSERT_EQ(calc1.Calculate("pref_path", &string_value_1),
calc1_dup.Calculate("pref_path", &string_value_1));
ASSERT_EQ(PrefHashCalculator::VALID,
calc1_dup.Validate(
"pref_path",
&string_value_1,
calc1.Calculate("pref_path", &string_value_1)));
// Different seeds, different hashes.
ASSERT_NE(calc1.Calculate("pref_path", &string_value_1),
calc2.Calculate("pref_path", &string_value_1));
ASSERT_EQ(PrefHashCalculator::INVALID,
calc2.Validate(
"pref_path",
&string_value_1,
calc1.Calculate("pref_path", &string_value_1)));
// Different device IDs, different hashes.
ASSERT_NE(calc1.Calculate("pref_path", &string_value_1),
calc3.Calculate("pref_path", &string_value_1));
// Different values, different hashes.
ASSERT_NE(calc1.Calculate("pref_path", &string_value_1),
calc1.Calculate("pref_path", &string_value_2));
// Different paths, different hashes.
ASSERT_NE(calc1.Calculate("pref_path", &string_value_1),
calc1.Calculate("pref_path_2", &string_value_1));
// Works for dictionaries.
ASSERT_EQ(calc1.Calculate("pref_path", &dictionary_value_1),
calc1.Calculate("pref_path", &dictionary_value_1));
ASSERT_NE(calc1.Calculate("pref_path", &dictionary_value_1),
calc1.Calculate("pref_path", &dictionary_value_2));
// Empty dictionary children are pruned.
ASSERT_EQ(calc1.Calculate("pref_path", &dictionary_value_1),
calc1.Calculate("pref_path", &dictionary_value_1_equivalent));
// NULL value is supported.
ASSERT_FALSE(calc1.Calculate("pref_path", NULL).empty());
}
// Tests the output against a known value to catch unexpected algorithm changes.
// The test hashes below must NEVER be updated, the serialization algorithm used
// must always be able to generate data that will produce these exact hashes.
TEST(PrefHashCalculatorTest, CatchHashChanges) {
static const char kSeed[] = "0123456789ABCDEF0123456789ABCDEF";
static const char kDeviceId[] = "test_device_id1";
scoped_ptr<base::Value> null_value(base::Value::CreateNullValue());
scoped_ptr<base::Value> bool_value(new base::FundamentalValue(false));
scoped_ptr<base::Value> int_value(
base::Value::CreateIntegerValue(1234567890));
scoped_ptr<base::Value> double_value(
new base::FundamentalValue(123.0987654321));
scoped_ptr<base::Value> string_value(
new base::StringValue("testing with special chars:\n<>{}:^^@#$\\/"));
// For legacy reasons, we have to support pruning of empty lists/dictionaries
// and nested empty ists/dicts in the hash generation algorithm.
scoped_ptr<base::DictionaryValue> nested_empty_dict(
new base::DictionaryValue);
nested_empty_dict->Set("a", new base::DictionaryValue);
nested_empty_dict->Set("b", new base::ListValue);
scoped_ptr<base::ListValue> nested_empty_list(
new base::ListValue);
nested_empty_list->Append(new base::DictionaryValue);
nested_empty_list->Append(new base::ListValue);
nested_empty_list->Append(nested_empty_dict->DeepCopy());
// A dictionary with an empty dictionary, an empty list, and nested empty
// dictionaries/lists in it.
scoped_ptr<base::DictionaryValue> dict_value(new base::DictionaryValue);
dict_value->Set("a", new base::StringValue("foo"));
dict_value->Set("d", new base::ListValue);
dict_value->Set("b", new base::DictionaryValue);
dict_value->Set("c", new base::StringValue("baz"));
dict_value->Set("e", nested_empty_dict.release());
dict_value->Set("f", nested_empty_list.release());
scoped_ptr<base::ListValue> list_value(new base::ListValue);
list_value->AppendBoolean(true);
list_value->AppendInteger(100);
list_value->AppendDouble(1.0);
ASSERT_EQ(base::Value::TYPE_NULL, null_value->GetType());
ASSERT_EQ(base::Value::TYPE_BOOLEAN, bool_value->GetType());
ASSERT_EQ(base::Value::TYPE_INTEGER, int_value->GetType());
ASSERT_EQ(base::Value::TYPE_DOUBLE, double_value->GetType());
ASSERT_EQ(base::Value::TYPE_STRING, string_value->GetType());
ASSERT_EQ(base::Value::TYPE_DICTIONARY, dict_value->GetType());
ASSERT_EQ(base::Value::TYPE_LIST, list_value->GetType());
// Test every value type independently. Intentionally omits TYPE_BINARY which
// isn't even allowed in JSONWriter's input.
static const char kExpectedNullValue[] =
"C2871D0AC76176E39948C50A9A562B863E610FDA90C675A6A8AD16B4DC4F53DC";
EXPECT_EQ(PrefHashCalculator::VALID,
PrefHashCalculator(kSeed, kDeviceId).Validate(
"pref.path", null_value.get(), kExpectedNullValue));
static const char kExpectedBooleanValue[] =
"A326E2F405CFE05D08289CDADD9DB4F529592F0945A8CE204289E4C930D8AA43";
EXPECT_EQ(PrefHashCalculator::VALID,
PrefHashCalculator(kSeed, kDeviceId).Validate(
"pref.path", bool_value.get(), kExpectedBooleanValue));
static const char kExpectedIntegerValue[] =
"4B69938F802A2A26D69467F3E1E4A474F6323C64EFC54DBDB4A5708A7D005042";
EXPECT_EQ(PrefHashCalculator::VALID,
PrefHashCalculator(kSeed, kDeviceId).Validate(
"pref.path", int_value.get(), kExpectedIntegerValue));
static const char kExpectedDoubleValue[] =
"1734C9C745B9C92D896B9A710994BF1B56D55BFB0F00C207EC995152AF02F08F";
EXPECT_EQ(PrefHashCalculator::VALID,
PrefHashCalculator(kSeed, kDeviceId).Validate(
"pref.path", double_value.get(), kExpectedDoubleValue));
static const char kExpectedStringValue[] =
"154D15522C856AA944BFA5A9E3FFB46925BF2B95A10199564651CA1C13E98433";
EXPECT_EQ(PrefHashCalculator::VALID,
PrefHashCalculator(kSeed, kDeviceId).Validate(
"pref.path", string_value.get(), kExpectedStringValue));
static const char kExpectedDictValue[] =
"597CECCBF930AF1FFABAC6AF3851C062867C134B4D5A06BDB3B03B988A182CBB";
EXPECT_EQ(PrefHashCalculator::VALID,
PrefHashCalculator(kSeed, kDeviceId).Validate(
"pref.path", dict_value.get(), kExpectedDictValue));
static const char kExpectedListValue[] =
"4E2CC0A9B8DF8C5049C53E8B139007792EC6295239545BC99BBF9CDE8A2F5E30";
EXPECT_EQ(PrefHashCalculator::VALID,
PrefHashCalculator(kSeed, kDeviceId).Validate(
"pref.path", list_value.get(), kExpectedListValue));
// Also test every value type together in the same dictionary.
base::DictionaryValue everything;
everything.Set("null", null_value.release());
everything.Set("bool", bool_value.release());
everything.Set("int", int_value.release());
everything.Set("double", double_value.release());
everything.Set("string", string_value.release());
everything.Set("list", list_value.release());
everything.Set("dict", dict_value.release());
static const char kExpectedEverythingValue[] =
"5A9D15E4D2FA909007EDE6A18605735E3EB712E2EDE83D6735CE5DD96A5AFBAA";
EXPECT_EQ(PrefHashCalculator::VALID,
PrefHashCalculator(kSeed, kDeviceId).Validate(
"pref.path", &everything, kExpectedEverythingValue));
}
TEST(PrefHashCalculatorTest, TestCompatibilityWithPrefMetricsService) {
static const char kSeed[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F
};
static const char kDeviceId[] =
"D730D9CBD98C734A4FB097A1922275FE9F7E026A4EA1BE0E84";
static const char kExpectedValue[] =
"845EF34663FF8D32BE6707F40258FBA531C2BFC532E3B014AFB3476115C2A9DE";
base::ListValue startup_urls;
startup_urls.Set(0, new base::StringValue("http://www.chromium.org/"));
EXPECT_EQ(PrefHashCalculator::VALID,
PrefHashCalculator(std::string(kSeed, arraysize(kSeed)), kDeviceId).
Validate("session.startup_urls", &startup_urls, kExpectedValue));
}
TEST(PrefHashCalculatorTest, TestLegacyNoDeviceIdNoPathAlgorithm) {
static const char kTestedLegacyHash[] =
"C503FB7C65EEFD5C07185F616A0AA67923C069909933F362022B1F187E73E9A2";
static const char kDeviceId[] = "not_used";
base::DictionaryValue dict;
dict.Set("a", new base::StringValue("foo"));
dict.Set("d", new base::StringValue("bad"));
dict.Set("b", new base::StringValue("bar"));
dict.Set("c", new base::StringValue("baz"));
// 32 NULL bytes is the seed that was used to generate the legacy hash.
EXPECT_EQ(PrefHashCalculator::VALID_WEAK_LEGACY,
PrefHashCalculator(std::string(32u, 0), kDeviceId).Validate(
"unused_path", &dict, kTestedLegacyHash));
}
std::string MockGetLegacyDeviceId(const std::string& modern_device_id) {
if (modern_device_id.empty())
return std::string();
return modern_device_id + "_LEGACY";
}
TEST(PrefHashCalculatorTest, TestLegacyDeviceIdAlgorithm) {
// The full algorithm should kick in when the device id is non-empty and we
// should thus get VALID_SECURE_LEGACY on verification.
static const char kDeviceId[] = "DEVICE_ID";
static const char kSeed[] = "01234567890123456789012345678901";
static const char kPrefPath[] = "test.pref";
static const char kPrefValue[] = "http://example.com/";
// Test hash based on the mock legacy id (based on kDeviceId) + kPrefPath +
// kPrefValue under kSeed.
static const char kTestedHash[] =
"09ABD84B13E4366B24DFF898C8C4614E033514B4E2EF3C6810F50B63273C83AD";
const base::StringValue string_value(kPrefValue);
EXPECT_EQ(PrefHashCalculator::VALID_SECURE_LEGACY,
PrefHashCalculator(kSeed, kDeviceId,
base::Bind(&MockGetLegacyDeviceId)).Validate(
kPrefPath, &string_value, kTestedHash));
}
TEST(PrefHashCalculatorTest, TestLegacyDeviceIdAlgorithmOnEmptyDeviceId) {
// MockGetLegacyDeviceId will return a legacy device ID that is the same
// (empty) as the modern device ID here. So this MAC will be valid using
// either ID. The PrefHashCalculator should return VALID, not
// VALID_SECURE_LEGACY, in this case.
static const char kEmptyDeviceId[] = "";
static const char kSeed[] = "01234567890123456789012345678901";
static const char kPrefPath[] = "test.pref";
static const char kPrefValue[] = "http://example.com/";
// Test hash based on an empty legacy device id + kPrefPath + kPrefValue under
// kSeed.
static const char kTestedHash[] =
"842C71283B9C3D86AA934CD639FDB0428BF0E2B6EC8537A21575CC4C4FA0A615";
const base::StringValue string_value(kPrefValue);
EXPECT_EQ(PrefHashCalculator::VALID,
PrefHashCalculator(kSeed, kEmptyDeviceId,
base::Bind(&MockGetLegacyDeviceId)).Validate(
kPrefPath, &string_value, kTestedHash));
}
|