summaryrefslogtreecommitdiffstats
path: root/chrome/browser/thumbnails/content_analysis.cc
blob: 230055587f42dc15c67ec6f945f331211f61e68d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "chrome/browser/thumbnails/content_analysis.h"

#include <algorithm>
#include <cmath>
#include <deque>
#include <functional>
#include <limits>
#include <numeric>
#include <vector>

#include "base/logging.h"
#include "skia/ext/convolver.h"
#include "skia/ext/recursive_gaussian_convolution.h"
#include "third_party/skia/include/core/SkBitmap.h"
#include "third_party/skia/include/core/SkSize.h"
#include "ui/gfx/color_analysis.h"

namespace {

const float kSigmaThresholdForRecursive = 1.5f;

template<class InputIterator, class OutputIterator, class Compare>
void SlidingWindowMinMax(InputIterator first,
                         InputIterator last,
                         OutputIterator output,
                         int window_size,
                         Compare cmp) {
  typedef std::deque<
      std::pair<typename std::iterator_traits<InputIterator>::value_type, int> >
          deque_type;
  deque_type slider;
  int front_tail_length = window_size / 2;
  int i = 0;
  DCHECK_LT(front_tail_length, last - first);
  // This min-max filter functions the way image filters do. The min/max we
  // compute is placed in the center of the window. Thus, first we need to
  // 'pre-load' the window with the slider with right-tail of the filter.
  for (; first < last && i < front_tail_length; ++i, ++first)
    slider.push_back(std::make_pair(*first, i));

  for (; first < last; ++i, ++first, ++output) {
    while (!slider.empty() && !cmp(slider.back().first, *first))
      slider.pop_back();
    slider.push_back(std::make_pair(*first, i));

    while (slider.front().second <= i - window_size)
      slider.pop_front();
    *output = slider.front().first;
  }

  // Now at the tail-end we will simply need to use whatever value is left of
  // the filter to compute the remaining front_tail_length taps in the output.

  // If input shorter than window, remainder length needs to be adjusted.
  front_tail_length = std::min(front_tail_length, i);
  for (; front_tail_length >= 0; --front_tail_length, ++i) {
    while (slider.front().second <= i - window_size)
      slider.pop_front();
    *output = slider.front().first;
  }
}

}  // namespace

namespace thumbnailing_utils {

void ApplyGaussianGradientMagnitudeFilter(SkBitmap* input_bitmap,
                                          float kernel_sigma) {
  // The purpose of this function is to highlight salient
  // (attention-attracting?) features of the image for use in image
  // retargetting.
  SkAutoLockPixels source_lock(*input_bitmap);
  DCHECK(input_bitmap);
  DCHECK(input_bitmap->getPixels());
  DCHECK_EQ(SkBitmap::kA8_Config, input_bitmap->config());

  // To perform computations we will need one intermediate buffer. It can
  // very well be just another bitmap.
  const SkISize image_size = SkISize::Make(input_bitmap->width(),
                                           input_bitmap->height());
  SkBitmap intermediate;
  intermediate.setConfig(
      input_bitmap->config(), image_size.width(), image_size.height());
  intermediate.allocPixels();

  SkBitmap intermediate2;
  intermediate2.setConfig(
      input_bitmap->config(), image_size.width(), image_size.height());
  intermediate2.allocPixels();


  if (kernel_sigma <= kSigmaThresholdForRecursive) {
    // For small kernels classic implementation is faster.
    skia::ConvolutionFilter1D smoothing_filter;
    skia::SetUpGaussianConvolutionKernel(
        &smoothing_filter, kernel_sigma, false);
    skia::SingleChannelConvolveX1D(
        input_bitmap->getAddr8(0, 0),
        static_cast<int>(input_bitmap->rowBytes()),
        0, input_bitmap->bytesPerPixel(),
        smoothing_filter,
        image_size,
        intermediate.getAddr8(0, 0),
        static_cast<int>(intermediate.rowBytes()),
        0, intermediate.bytesPerPixel(), false);
    skia::SingleChannelConvolveY1D(
        intermediate.getAddr8(0, 0),
        static_cast<int>(intermediate.rowBytes()),
        0, intermediate.bytesPerPixel(),
        smoothing_filter,
        image_size,
        input_bitmap->getAddr8(0, 0),
        static_cast<int>(input_bitmap->rowBytes()),
        0, input_bitmap->bytesPerPixel(), false);

    skia::ConvolutionFilter1D gradient_filter;
    skia::SetUpGaussianConvolutionKernel(&gradient_filter, kernel_sigma, true);
    skia::SingleChannelConvolveX1D(
        input_bitmap->getAddr8(0, 0),
        static_cast<int>(input_bitmap->rowBytes()),
        0, input_bitmap->bytesPerPixel(),
        gradient_filter,
        image_size,
        intermediate.getAddr8(0, 0),
        static_cast<int>(intermediate.rowBytes()),
        0, intermediate.bytesPerPixel(), true);
    skia::SingleChannelConvolveY1D(
        input_bitmap->getAddr8(0, 0),
        static_cast<int>(input_bitmap->rowBytes()),
        0, input_bitmap->bytesPerPixel(),
        gradient_filter,
        image_size,
        intermediate2.getAddr8(0, 0),
        static_cast<int>(intermediate2.rowBytes()),
        0, intermediate2.bytesPerPixel(), true);
  } else {
    // For larger sigma values use the recursive filter.
    skia::RecursiveFilter smoothing_filter(kernel_sigma,
                                           skia::RecursiveFilter::FUNCTION);
    skia::SingleChannelRecursiveGaussianX(
        input_bitmap->getAddr8(0, 0),
        static_cast<int>(input_bitmap->rowBytes()),
        0, input_bitmap->bytesPerPixel(),
        smoothing_filter,
        image_size,
        intermediate.getAddr8(0, 0),
        static_cast<int>(intermediate.rowBytes()),
        0, intermediate.bytesPerPixel(), false);
    unsigned char smoothed_max = skia::SingleChannelRecursiveGaussianY(
        intermediate.getAddr8(0, 0),
        static_cast<int>(intermediate.rowBytes()),
        0, intermediate.bytesPerPixel(),
        smoothing_filter,
        image_size,
        input_bitmap->getAddr8(0, 0),
        static_cast<int>(input_bitmap->rowBytes()),
        0, input_bitmap->bytesPerPixel(), false);
    if (smoothed_max < 127) {
      int bit_shift = 8 - static_cast<int>(
          std::log10(static_cast<float>(smoothed_max)) / std::log10(2.0f));
      for (int r = 0; r < image_size.height(); ++r) {
        uint8* row = input_bitmap->getAddr8(0, r);
        for (int c = 0; c < image_size.width(); ++c, ++row) {
          *row <<= bit_shift;
        }
      }
    }

    skia::RecursiveFilter gradient_filter(
        kernel_sigma, skia::RecursiveFilter::FIRST_DERIVATIVE);
    skia::SingleChannelRecursiveGaussianX(
        input_bitmap->getAddr8(0, 0),
        static_cast<int>(input_bitmap->rowBytes()),
        0, input_bitmap->bytesPerPixel(),
        gradient_filter,
        image_size,
        intermediate.getAddr8(0, 0),
        static_cast<int>(intermediate.rowBytes()),
        0, intermediate.bytesPerPixel(), true);
    skia::SingleChannelRecursiveGaussianY(
        input_bitmap->getAddr8(0, 0),
        static_cast<int>(input_bitmap->rowBytes()),
        0, input_bitmap->bytesPerPixel(),
        gradient_filter,
        image_size,
        intermediate2.getAddr8(0, 0),
        static_cast<int>(intermediate2.rowBytes()),
        0, intermediate2.bytesPerPixel(), true);
  }

  unsigned grad_max = 0;
  for (int r = 0; r < image_size.height(); ++r) {
    const uint8* grad_x_row = intermediate.getAddr8(0, r);
    const uint8* grad_y_row = intermediate2.getAddr8(0, r);
    for (int c = 0; c < image_size.width(); ++c) {
      unsigned grad_x = grad_x_row[c];
      unsigned grad_y = grad_y_row[c];
      grad_max = std::max(grad_max, grad_x * grad_x + grad_y * grad_y);
    }
  }

  int bit_shift = 0;
  if (grad_max > 255)
    bit_shift = static_cast<int>(
        std::log10(static_cast<float>(grad_max)) / std::log10(2.0f)) - 7;
  for (int r = 0; r < image_size.height(); ++r) {
    const uint8* grad_x_row = intermediate.getAddr8(0, r);
    const uint8* grad_y_row = intermediate2.getAddr8(0, r);
    uint8* target_row = input_bitmap->getAddr8(0, r);
    for (int c = 0; c < image_size.width(); ++c) {
      unsigned grad_x = grad_x_row[c];
      unsigned grad_y = grad_y_row[c];
      target_row[c] = (grad_x * grad_x + grad_y * grad_y) >> bit_shift;
    }
  }
}

void ExtractImageProfileInformation(const SkBitmap& input_bitmap,
                                    const gfx::Rect& area,
                                    const gfx::Size& target_size,
                                    bool apply_log,
                                    std::vector<float>* rows,
                                    std::vector<float>* columns) {
  SkAutoLockPixels source_lock(input_bitmap);
  DCHECK(rows);
  DCHECK(columns);
  DCHECK(input_bitmap.getPixels());
  DCHECK_EQ(SkBitmap::kA8_Config, input_bitmap.config());
  DCHECK_GE(area.x(), 0);
  DCHECK_GE(area.y(), 0);
  DCHECK_LE(area.right(), input_bitmap.width());
  DCHECK_LE(area.bottom(), input_bitmap.height());

  // Make sure rows and columns are allocated and initialized to 0.
  rows->clear();
  columns->clear();
  rows->resize(area.height(), 0);
  columns->resize(area.width(), 0);

  for (int r = 0; r < area.height(); ++r) {
    // Points to the first byte of the row in the rectangle.
    const uint8* image_row = input_bitmap.getAddr8(area.x(), r + area.y());
    unsigned row_sum = 0;
    for (int c = 0; c < area.width(); ++c, ++image_row) {
      row_sum += *image_row;
      (*columns)[c] += *image_row;
    }
    (*rows)[r] = row_sum;
  }

  if (apply_log) {
    // Generally for processing we will need to take logarithm of this data.
    // The option not to apply it is left principally as a test seam.
    std::vector<float>::iterator it;
    for (it = columns->begin(); it < columns->end(); ++it)
      *it = std::log(1.0f + *it);

    for (it = rows->begin(); it < rows->end(); ++it)
      *it = std::log(1.0f + *it);
  }

  if (!target_size.IsEmpty()) {
    // If the target size is given, profiles should be further processed through
    // morphological closing. The idea is to close valleys smaller than what
    // can be seen after scaling down to avoid deforming noticable features
    // when profiles are used.
    // Morphological closing is defined as dilation followed by errosion. In
    // normal-speak: sliding-window maximum followed by minimum.
    int column_window_size = 1 + 2 *
        static_cast<int>(0.5f * area.width() / target_size.width() + 0.5f);
    int row_window_size = 1 + 2 *
        static_cast<int>(0.5f * area.height() / target_size.height() + 0.5f);

    // Dilate and erode each profile with the given window size.
    if (column_window_size >= 3) {
      SlidingWindowMinMax(columns->begin(),
                          columns->end(),
                          columns->begin(),
                          column_window_size,
                          std::greater<float>());
      SlidingWindowMinMax(columns->begin(),
                          columns->end(),
                          columns->begin(),
                          column_window_size,
                          std::less<float>());
    }

    if (row_window_size >= 3) {
      SlidingWindowMinMax(rows->begin(),
                          rows->end(),
                          rows->begin(),
                          row_window_size,
                          std::greater<float>());
      SlidingWindowMinMax(rows->begin(),
                          rows->end(),
                          rows->begin(),
                          row_window_size,
                          std::less<float>());
    }
  }
}

float AutoSegmentPeaks(const std::vector<float>& input) {
  // This is a thresholding operation based on Otsu's method.
  std::vector<int> histogram(256, 0);
  std::vector<float>::const_iterator it;

  float value_min = std::numeric_limits<float>::max();
  float value_max = std::numeric_limits<float>::min();

  for (it = input.begin(); it < input.end(); ++it) {
    value_min = std::min(value_min, *it);
    value_max = std::max(value_max, *it);
  }

  if (value_max - value_min <= std::numeric_limits<float>::epsilon() * 100) {
    // Scaling won't work and there is nothing really to segment anyway.
    return value_min;
  }

  float value_span = value_max - value_min;
  for (it = input.begin(); it < input.end(); ++it) {
    float scaled_value = (*it - value_min) / value_span * 255;
    histogram[static_cast<int>(scaled_value)] += 1;
  }

  // Otsu's method seeks to maximize variance between two classes of pixels
  // correspondng to valleys and peaks of the profile.
  double w1 = histogram[0];  // Total weight of the first class.
  double t1 = 0.5 * w1;
  double w2 = 0;
  double t2 = 0;
  for (size_t i = 1; i < histogram.size(); ++i) {
    w2 += histogram[i];
    t2 += (0.5 + i) * histogram[i];
  }

  size_t max_index = 0;
  double m1 = t1 / w1;
  double m2 = t2 / w2;
  double max_variance_score = w1 * w2 * (m1 - m2) * (m1 - m2);
  // Iterate through all possible ways of splitting the histogram.
  for (size_t i = 1; i < histogram.size() - 1; i++) {
    double bin_volume = (0.5 + i) * histogram[i];
    w1 += histogram[i];
    w2 -= histogram[i];
    t2 -= bin_volume;
    t1 += bin_volume;
    m1 = t1 / w1;
    m2 = t2 / w2;
    double variance_score = w1 * w2 * (m1 - m2) * (m1 - m2);
    if (variance_score >= max_variance_score) {
      max_variance_score = variance_score;
      max_index = i;
    }
  }

  // max_index refers to the bin *after* which we need to split. The sought
  // threshold is the centre of this bin, scaled back to the original range.
  return value_span * (max_index + 0.5f) / 255.0f + value_min;
}

SkBitmap ComputeDecimatedImage(const SkBitmap& bitmap,
                               const std::vector<bool>& rows,
                               const std::vector<bool>& columns) {
  SkAutoLockPixels source_lock(bitmap);
  DCHECK(bitmap.getPixels());
  DCHECK_GT(bitmap.bytesPerPixel(), 0);
  DCHECK_EQ(bitmap.width(), static_cast<int>(columns.size()));
  DCHECK_EQ(bitmap.height(), static_cast<int>(rows.size()));

  unsigned target_row_count = std::count(rows.begin(), rows.end(), true);
  unsigned target_column_count = std::count(
      columns.begin(), columns.end(), true);

  if (target_row_count == 0 || target_column_count == 0)
    return SkBitmap();  // Not quite an error, so no DCHECK. Just return empty.

  if (target_row_count == rows.size() && target_column_count == columns.size())
    return SkBitmap();  // Equivalent of the situation above (empty target).

  // Allocate the target image.
  SkBitmap target;
  target.setConfig(bitmap.config(), target_column_count, target_row_count);
  target.allocPixels();

  int target_row = 0;
  for (int r = 0; r < bitmap.height(); ++r) {
    if (!rows[r])
      continue;  // We can just skip this one.
    uint8* src_row =
        static_cast<uint8*>(bitmap.getPixels()) + r * bitmap.rowBytes();
    uint8* insertion_target = static_cast<uint8*>(target.getPixels()) +
        target_row * target.rowBytes();
    int left_copy_pixel = -1;
    for (int c = 0; c < bitmap.width(); ++c) {
      if (left_copy_pixel < 0 && columns[c]) {
        left_copy_pixel = c;  // Next time we will start copying from here.
      } else if (left_copy_pixel >= 0 && !columns[c]) {
        // This closes a fragment we want to copy. We do it now.
        size_t bytes_to_copy = (c - left_copy_pixel) * bitmap.bytesPerPixel();
        memcpy(insertion_target,
               src_row + left_copy_pixel * bitmap.bytesPerPixel(),
               bytes_to_copy);
        left_copy_pixel = -1;
        insertion_target += bytes_to_copy;
      }
    }
    // We can still have the tail end to process here.
    if (left_copy_pixel >= 0) {
      size_t bytes_to_copy =
          (bitmap.width() - left_copy_pixel) * bitmap.bytesPerPixel();
      memcpy(insertion_target,
             src_row + left_copy_pixel * bitmap.bytesPerPixel(),
             bytes_to_copy);
    }
    target_row++;
  }

  return target;
}

SkBitmap CreateRetargettedThumbnailImage(
    const SkBitmap& source_bitmap,
    const gfx::Size& target_size,
    float kernel_sigma) {
  // First thing we need for this method is to color-reduce the source_bitmap.
  SkBitmap reduced_color;
  reduced_color.setConfig(
      SkBitmap::kA8_Config, source_bitmap.width(), source_bitmap.height());
  reduced_color.allocPixels();

  if (!color_utils::ComputePrincipalComponentImage(source_bitmap,
                                                   &reduced_color)) {
    // CCIR601 luminance conversion vector.
    gfx::Vector3dF transform(0.299f, 0.587f, 0.114f);
    if (!color_utils::ApplyColorReduction(
            source_bitmap, transform, true, &reduced_color)) {
      DLOG(WARNING) << "Failed to compute luminance image from a screenshot. "
                    << "Cannot compute retargetted thumbnail.";
      return SkBitmap();
    }
    DLOG(WARNING) << "Could not compute principal color image for a thumbnail. "
                  << "Using luminance instead.";
  }

  // Turn 'color-reduced' image into the 'energy' image.
  ApplyGaussianGradientMagnitudeFilter(&reduced_color, kernel_sigma);

  // Extract vertical and horizontal projection of image features.
  std::vector<float> row_profile;
  std::vector<float> column_profile;
  ExtractImageProfileInformation(reduced_color,
                                 gfx::Rect(reduced_color.width(),
                                           reduced_color.height()),
                                 target_size,
                                 true,
                                 &row_profile,
                                 &column_profile);
  float threshold_rows = AutoSegmentPeaks(row_profile);
  float threshold_columns = AutoSegmentPeaks(column_profile);

  // Apply thresholding.
  std::vector<bool> included_rows(row_profile.size(), false);
  std::transform(row_profile.begin(),
                 row_profile.end(),
                 included_rows.begin(),
                 std::bind2nd(std::greater<float>(), threshold_rows));

  std::vector<bool> included_columns(column_profile.size(), false);
  std::transform(column_profile.begin(),
                 column_profile.end(),
                 included_columns.begin(),
                 std::bind2nd(std::greater<float>(), threshold_columns));

  // Use the original image and computed inclusion vectors to create a resized
  // image.
  return ComputeDecimatedImage(source_bitmap, included_rows, included_columns);
}

}  // thumbnailing_utils