1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
|
// Copyright (c) 2010 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "chrome/common/service_process_util.h"
#include <signal.h>
#include <unistd.h>
#include "base/file_util.h"
#include "base/logging.h"
#include "base/message_loop.h"
#include "base/message_loop_proxy.h"
#include "base/message_pump_libevent.h"
#include "base/path_service.h"
#include "chrome/common/chrome_paths.h"
#include "chrome/common/chrome_version_info.h"
#include "chrome/common/multi_process_lock.h"
namespace {
int g_signal_socket = -1;
// Gets the name of the lock file for service process.
FilePath GetServiceProcessLockFilePath() {
FilePath user_data_dir;
PathService::Get(chrome::DIR_USER_DATA, &user_data_dir);
chrome::VersionInfo version_info;
std::string lock_file_name = version_info.Version() + "Service Process Lock";
return user_data_dir.Append(lock_file_name);
}
// Attempts to take a lock named |name|. If |waiting| is true then this will
// make multiple attempts to acquire the lock.
// Caller is responsible for ownership of the MultiProcessLock.
MultiProcessLock* TakeNamedLock(const std::string& name, bool waiting) {
scoped_ptr<MultiProcessLock> lock(MultiProcessLock::Create(name));
if (lock == NULL) return NULL;
bool got_lock = false;
for (int i = 0; i < 10; ++i) {
if (lock->TryLock()) {
got_lock = true;
break;
}
if (!waiting) break;
base::PlatformThread::Sleep(100 * i);
}
if (!got_lock) {
lock.reset();
}
return lock.release();
}
MultiProcessLock* TakeServiceRunningLock(bool waiting) {
std::string lock_name =
GetServiceProcessScopedName("_service_running");
return TakeNamedLock(lock_name, waiting);
}
MultiProcessLock* TakeServiceInitializingLock(bool waiting) {
std::string lock_name =
GetServiceProcessScopedName("_service_initializing");
return TakeNamedLock(lock_name, waiting);
}
} // namespace
// Watches for |kShutDownMessage| to be written to the file descriptor it is
// watching. When it reads |kShutDownMessage|, it performs |shutdown_task_|.
// Used here to monitor the socket listening to g_signal_socket.
class ServiceProcessShutdownMonitor
: public base::MessagePumpLibevent::Watcher {
public:
enum {
kShutDownMessage = 0xdecea5e
};
explicit ServiceProcessShutdownMonitor(Task* shutdown_task)
: shutdown_task_(shutdown_task) {
}
virtual ~ServiceProcessShutdownMonitor();
virtual void OnFileCanReadWithoutBlocking(int fd);
virtual void OnFileCanWriteWithoutBlocking(int fd);
private:
scoped_ptr<Task> shutdown_task_;
};
ServiceProcessShutdownMonitor::~ServiceProcessShutdownMonitor() {
}
void ServiceProcessShutdownMonitor::OnFileCanReadWithoutBlocking(int fd) {
if (shutdown_task_.get()) {
int buffer;
int length = read(fd, &buffer, sizeof(buffer));
if ((length == sizeof(buffer)) && (buffer == kShutDownMessage)) {
shutdown_task_->Run();
shutdown_task_.reset();
} else if (length > 0) {
LOG(ERROR) << "Unexpected read: " << buffer;
} else if (length == 0) {
LOG(ERROR) << "Unexpected fd close";
} else if (length < 0) {
PLOG(ERROR) << "read";
}
}
}
void ServiceProcessShutdownMonitor::OnFileCanWriteWithoutBlocking(int fd) {
NOTIMPLEMENTED();
}
// "Forced" Shutdowns on POSIX are done via signals. The magic signal for
// a shutdown is SIGTERM. "write" is a signal safe function. PLOG(ERROR) is
// not, but we don't ever expect it to be called.
static void SigTermHandler(int sig, siginfo_t* info, void* uap) {
// TODO(dmaclach): add security here to make sure that we are being shut
// down by an appropriate process.
int message = ServiceProcessShutdownMonitor::kShutDownMessage;
if (write(g_signal_socket, &message, sizeof(message)) < 0) {
PLOG(ERROR) << "write";
}
}
// See comment for SigTermHandler.
bool ForceServiceProcessShutdown(const std::string& version,
base::ProcessId process_id) {
if (kill(process_id, SIGTERM) < 0) {
PLOG(ERROR) << "kill";
return false;
}
return true;
}
bool CheckServiceProcessReady() {
scoped_ptr<MultiProcessLock> running_lock(TakeServiceRunningLock(false));
return running_lock.get() == NULL;
}
struct ServiceProcessState::StateData
: public base::RefCountedThreadSafe<ServiceProcessState::StateData> {
scoped_ptr<MultiProcessLock> initializing_lock_;
scoped_ptr<MultiProcessLock> running_lock_;
scoped_ptr<ServiceProcessShutdownMonitor> shut_down_monitor_;
base::MessagePumpLibevent::FileDescriptorWatcher watcher_;
int sockets_[2];
struct sigaction old_action_;
bool set_action_;
// WatchFileDescriptor needs to be set up by the thread that is going
// to be monitoring it.
void SignalReady() {
CHECK(MessageLoopForIO::current()->WatchFileDescriptor(
sockets_[0], true, MessageLoopForIO::WATCH_READ,
&watcher_, shut_down_monitor_.get()));
g_signal_socket = sockets_[1];
// Set up signal handler for SIGTERM.
struct sigaction action;
action.sa_sigaction = SigTermHandler;
sigemptyset(&action.sa_mask);
action.sa_flags = SA_SIGINFO;
if (sigaction(SIGTERM, &action, &old_action_) == 0) {
// If the old_action is not default, somebody else has installed a
// a competing handler. Our handler is going to override it so it
// won't be called. If this occurs it needs to be fixed.
DCHECK_EQ(old_action_.sa_handler, SIG_DFL);
set_action_ = true;
initializing_lock_.reset();
} else {
PLOG(ERROR) << "sigaction";
}
}
};
bool ServiceProcessState::TakeSingletonLock() {
CHECK(!state_);
state_ = new StateData;
state_->AddRef();
state_->sockets_[0] = -1;
state_->sockets_[1] = -1;
state_->set_action_ = false;
state_->initializing_lock_.reset(TakeServiceInitializingLock(true));
return state_->initializing_lock_.get();
}
bool ServiceProcessState::SignalReady(
base::MessageLoopProxy* message_loop_proxy, Task* shutdown_task) {
CHECK(state_);
CHECK_EQ(g_signal_socket, -1);
state_->running_lock_.reset(TakeServiceRunningLock(true));
if (state_->running_lock_.get() == NULL) {
return false;
}
state_->shut_down_monitor_.reset(
new ServiceProcessShutdownMonitor(shutdown_task));
if (pipe(state_->sockets_) < 0) {
PLOG(ERROR) << "pipe";
return false;
}
message_loop_proxy->PostTask(FROM_HERE,
NewRunnableMethod(state_, &ServiceProcessState::StateData::SignalReady));
return true;
}
bool ServiceProcessState::AddToAutoRun() {
NOTIMPLEMENTED();
return false;
}
bool ServiceProcessState::RemoveFromAutoRun() {
NOTIMPLEMENTED();
return false;
}
void ServiceProcessState::TearDownState() {
g_signal_socket = -1;
if (state_) {
if (state_->sockets_[0] != -1) {
close(state_->sockets_[0]);
}
if (state_->sockets_[1] != -1) {
close(state_->sockets_[1]);
}
if (state_->set_action_) {
if (sigaction(SIGTERM, &state_->old_action_, NULL) < 0) {
PLOG(ERROR) << "sigaction";
}
}
state_->Release();
state_ = NULL;
}
}
|