1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
|
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "chrome/nacl/nacl_ipc_adapter.h"
#include <string.h>
#include "base/memory/scoped_ptr.h"
#include "base/message_loop.h"
#include "base/message_loop_proxy.h"
#include "base/threading/platform_thread.h"
#include "base/threading/simple_thread.h"
#include "ipc/ipc_test_sink.h"
#include "native_client/src/trusted/desc/nacl_desc_custom.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace {
class NaClIPCAdapterTest : public testing::Test {
public:
NaClIPCAdapterTest() {}
// testing::Test implementation.
virtual void SetUp() OVERRIDE {
sink_ = new IPC::TestSink;
// Takes ownership of the sink_ pointer. Note we provide the current message
// loop instead of using a real IO thread. This should work OK since we do
// not need real IPC for the tests.
adapter_ = new NaClIPCAdapter(scoped_ptr<IPC::Channel>(sink_),
base::MessageLoopProxy::current());
}
virtual void TearDown() OVERRIDE {
sink_ = NULL; // This pointer is actually owned by the IPCAdapter.
adapter_ = NULL;
// The adapter destructor has to post a task to destroy the Channel on the
// IO thread. For the purposes of the test, we just need to make sure that
// task gets run, or it will appear as a leak.
message_loop_.RunAllPending();
}
protected:
int BlockingReceive(void* buf, size_t buf_size) {
NaClImcMsgIoVec iov = {buf, buf_size};
NaClImcTypedMsgHdr msg = {&iov, 1};
return adapter_->BlockingReceive(&msg);
}
int Send(void* buf, size_t buf_size) {
NaClImcMsgIoVec iov = {buf, buf_size};
NaClImcTypedMsgHdr msg = {&iov, 1};
return adapter_->Send(&msg);
}
MessageLoop message_loop_;
scoped_refptr<NaClIPCAdapter> adapter_;
// Messages sent from nacl to the adapter end up here. Note that we create
// this pointer and pass ownership of it to the IPC adapter, who will keep
// it alive as long as the adapter is alive. This means that when the
// adapter goes away, this pointer will become invalid.
//
// In real life the adapter needs to take ownership so the channel can be
// destroyed on the right thread.
IPC::TestSink* sink_;
};
} // namespace
// Tests a simple message getting rewritten sent from native code to NaCl.
TEST_F(NaClIPCAdapterTest, SimpleReceiveRewriting) {
int routing_id = 0x89898989;
uint32 type = 0x55555555;
IPC::Message input(routing_id, type, IPC::Message::PRIORITY_NORMAL);
uint32 flags = input.flags();
int value = 0x12345678;
input.WriteInt(value);
adapter_->OnMessageReceived(input);
// Buffer just need to be big enough for our message with one int.
const int kBufSize = 64;
char buf[kBufSize];
int bytes_read = BlockingReceive(buf, kBufSize);
EXPECT_EQ(sizeof(NaClIPCAdapter::NaClMessageHeader) + sizeof(int),
static_cast<size_t>(bytes_read));
const NaClIPCAdapter::NaClMessageHeader* output_header =
reinterpret_cast<const NaClIPCAdapter::NaClMessageHeader*>(buf);
EXPECT_EQ(sizeof(int), output_header->payload_size);
EXPECT_EQ(routing_id, output_header->routing);
EXPECT_EQ(type, output_header->type);
EXPECT_EQ(flags, output_header->flags);
EXPECT_EQ(0u, output_header->num_fds);
EXPECT_EQ(0u, output_header->pad);
// Validate the payload.
EXPECT_EQ(value,
*reinterpret_cast<const int*>(&buf[
sizeof(NaClIPCAdapter::NaClMessageHeader)]));
}
// Tests a simple message getting rewritten sent from NaCl to native code.
TEST_F(NaClIPCAdapterTest, SendRewriting) {
int routing_id = 0x89898989;
uint32 type = 0x55555555;
int value = 0x12345678;
// Send a message with one int inside it.
const int buf_size = sizeof(NaClIPCAdapter::NaClMessageHeader) + sizeof(int);
char buf[buf_size] = {0};
NaClIPCAdapter::NaClMessageHeader* header =
reinterpret_cast<NaClIPCAdapter::NaClMessageHeader*>(buf);
header->payload_size = sizeof(int);
header->routing = routing_id;
header->type = type;
header->flags = 0;
header->num_fds = 0;
*reinterpret_cast<int*>(
&buf[sizeof(NaClIPCAdapter::NaClMessageHeader)]) = value;
int result = Send(buf, buf_size);
EXPECT_EQ(buf_size, result);
// Check that the message came out the other end in the test sink
// (messages are posted, so we have to pump).
message_loop_.RunAllPending();
ASSERT_EQ(1u, sink_->message_count());
const IPC::Message* msg = sink_->GetMessageAt(0);
EXPECT_EQ(sizeof(int), msg->payload_size());
EXPECT_EQ(header->routing, msg->routing_id());
EXPECT_EQ(header->type, msg->type());
// Now test the partial send case. We should be able to break the message
// into two parts and it should still work.
sink_->ClearMessages();
int first_chunk_size = 7;
result = Send(buf, first_chunk_size);
EXPECT_EQ(first_chunk_size, result);
// First partial send should not have made any messages.
message_loop_.RunAllPending();
ASSERT_EQ(0u, sink_->message_count());
// Second partial send should do the same.
int second_chunk_size = 2;
result = Send(&buf[first_chunk_size], second_chunk_size);
EXPECT_EQ(second_chunk_size, result);
message_loop_.RunAllPending();
ASSERT_EQ(0u, sink_->message_count());
// Send the rest of the message in a third chunk.
int third_chunk_size = buf_size - first_chunk_size - second_chunk_size;
result = Send(&buf[first_chunk_size + second_chunk_size],
third_chunk_size);
EXPECT_EQ(third_chunk_size, result);
// Last send should have generated one message.
message_loop_.RunAllPending();
ASSERT_EQ(1u, sink_->message_count());
msg = sink_->GetMessageAt(0);
EXPECT_EQ(sizeof(int), msg->payload_size());
EXPECT_EQ(header->routing, msg->routing_id());
EXPECT_EQ(header->type, msg->type());
}
// Tests when a buffer is too small to receive the entire message.
TEST_F(NaClIPCAdapterTest, PartialReceive) {
int routing_id_1 = 0x89898989;
uint32 type_1 = 0x55555555;
IPC::Message input_1(routing_id_1, type_1, IPC::Message::PRIORITY_NORMAL);
int value_1 = 0x12121212;
input_1.WriteInt(value_1);
adapter_->OnMessageReceived(input_1);
int routing_id_2 = 0x90909090;
uint32 type_2 = 0x66666666;
IPC::Message input_2(routing_id_2, type_2, IPC::Message::PRIORITY_NORMAL);
int value_2 = 0x23232323;
input_2.WriteInt(value_2);
adapter_->OnMessageReceived(input_2);
const int kBufSize = 64;
char buf[kBufSize];
// Read part of the first message.
int bytes_requested = 7;
int bytes_read = BlockingReceive(buf, bytes_requested);
ASSERT_EQ(bytes_requested, bytes_read);
// Read the rest, this should give us the rest of the first message only.
bytes_read += BlockingReceive(&buf[bytes_requested],
kBufSize - bytes_requested);
EXPECT_EQ(sizeof(NaClIPCAdapter::NaClMessageHeader) + sizeof(int),
static_cast<size_t>(bytes_read));
// Make sure we got the right message.
const NaClIPCAdapter::NaClMessageHeader* output_header =
reinterpret_cast<const NaClIPCAdapter::NaClMessageHeader*>(buf);
EXPECT_EQ(sizeof(int), output_header->payload_size);
EXPECT_EQ(routing_id_1, output_header->routing);
EXPECT_EQ(type_1, output_header->type);
// Read the second message to make sure we went on to it.
bytes_read = BlockingReceive(buf, kBufSize);
EXPECT_EQ(sizeof(NaClIPCAdapter::NaClMessageHeader) + sizeof(int),
static_cast<size_t>(bytes_read));
output_header =
reinterpret_cast<const NaClIPCAdapter::NaClMessageHeader*>(buf);
EXPECT_EQ(sizeof(int), output_header->payload_size);
EXPECT_EQ(routing_id_2, output_header->routing);
EXPECT_EQ(type_2, output_header->type);
}
// Tests sending messages that are too large. We test sends that are too
// small implicitly here and in the success case because in that case it
// succeeds and buffers the data.
TEST_F(NaClIPCAdapterTest, SendOverflow) {
int routing_id = 0x89898989;
uint32 type = 0x55555555;
int value = 0x12345678;
// Make a message with one int inside it. Reserve some extra space so
// we can test what happens when we send too much data.
const int buf_size = sizeof(NaClIPCAdapter::NaClMessageHeader) + sizeof(int);
const int big_buf_size = buf_size + 4;
char buf[big_buf_size] = {0};
NaClIPCAdapter::NaClMessageHeader* header =
reinterpret_cast<NaClIPCAdapter::NaClMessageHeader*>(buf);
header->payload_size = sizeof(int);
header->routing = routing_id;
header->type = type;
header->flags = 0;
header->num_fds = 0;
*reinterpret_cast<int*>(
&buf[sizeof(NaClIPCAdapter::NaClMessageHeader)]) = value;
// Send too much data and make sure that the send fails.
int result = Send(buf, big_buf_size);
EXPECT_EQ(-1, result);
message_loop_.RunAllPending();
ASSERT_EQ(0u, sink_->message_count());
// Send too much data in two chunks and make sure that the send fails.
int first_chunk_size = 7;
result = Send(buf, first_chunk_size);
EXPECT_EQ(first_chunk_size, result);
// First partial send should not have made any messages.
message_loop_.RunAllPending();
ASSERT_EQ(0u, sink_->message_count());
int second_chunk_size = big_buf_size - first_chunk_size;
result = Send(&buf[first_chunk_size], second_chunk_size);
EXPECT_EQ(-1, result);
message_loop_.RunAllPending();
ASSERT_EQ(0u, sink_->message_count());
}
// Tests that when the IPC channel reports an error, that waiting reads are
// unblocked and return a -1 error code.
TEST_F(NaClIPCAdapterTest, ReadWithChannelError) {
// Have a background thread that waits a bit and calls the channel error
// handler. This should wake up any waiting threads and immediately return
// -1. There is an inherent race condition in that we can't be sure if the
// other thread is actually waiting when this happens. This is OK, since the
// behavior (which we also explicitly test later) is to return -1 if the
// channel has already had an error when you start waiting.
class MyThread : public base::SimpleThread {
public:
explicit MyThread(NaClIPCAdapter* adapter)
: SimpleThread("NaClIPCAdapterThread"),
adapter_(adapter) {}
virtual void Run() {
base::PlatformThread::Sleep(base::TimeDelta::FromSeconds(1));
adapter_->OnChannelError();
}
private:
scoped_refptr<NaClIPCAdapter> adapter_;
};
MyThread thread(adapter_);
// IMPORTANT: do not return early from here down (including ASSERT_*) because
// the thread needs to joined or it will assert.
thread.Start();
// Request data. This will normally (modulo races) block until data is
// received or there is an error, and the thread above will wake us up
// after 1s.
const int kBufSize = 64;
char buf[kBufSize];
int result = BlockingReceive(buf, kBufSize);
EXPECT_EQ(-1, result);
// Test the "previously had an error" case. BlockingReceive should return
// immediately if there was an error.
result = BlockingReceive(buf, kBufSize);
EXPECT_EQ(-1, result);
thread.Join();
}
|