1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
|
// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
/*
* Copyright (C) 2008 Apple Inc. All rights reserved.
*
* Based on Abstract AVL Tree Template v1.5 by Walt Karas
* <http://geocities.com/wkaras/gen_cpp/avl_tree.html>.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef CONTENT_BROWSER_INDEXED_DB_LEVELDB_AVLTREE_H_
#define CONTENT_BROWSER_INDEXED_DB_LEVELDB_AVLTREE_H_
#include "base/logging.h"
#include "content/browser/indexed_db/leveldb/fixed_array.h"
namespace content {
// Here is the reference class for BSet.
//
// class BSet
// {
// public:
//
// class ANY_bitref
// {
// public:
// operator bool ();
// void operator = (bool b);
// };
//
// // Does not have to initialize bits.
// BSet();
//
// // Must return a valid value for index when 0 <= index < maxDepth
// ANY_bitref operator [] (unsigned index);
//
// // Set all bits to 1.
// void set();
//
// // Set all bits to 0.
// void reset();
// };
template <unsigned maxDepth> class AVLTreeDefaultBSet {
public:
bool& operator[](unsigned i) {
#if defined(ADDRESS_SANITIZER)
CHECK(i < maxDepth);
#endif
return m_data[i];
}
void set() {
for (unsigned i = 0; i < maxDepth; ++i)
m_data[i] = true;
}
void reset() {
for (unsigned i = 0; i < maxDepth; ++i)
m_data[i] = false;
}
private:
FixedArray<bool, maxDepth> m_data;
};
// How to determine maxDepth:
// d Minimum number of nodes
// 2 2
// 3 4
// 4 7
// 5 12
// 6 20
// 7 33
// 8 54
// 9 88
// 10 143
// 11 232
// 12 376
// 13 609
// 14 986
// 15 1,596
// 16 2,583
// 17 4,180
// 18 6,764
// 19 10,945
// 20 17,710
// 21 28,656
// 22 46,367
// 23 75,024
// 24 121,392
// 25 196,417
// 26 317,810
// 27 514,228
// 28 832,039
// 29 1,346,268
// 30 2,178,308
// 31 3,524,577
// 32 5,702,886
// 33 9,227,464
// 34 14,930,351
// 35 24,157,816
// 36 39,088,168
// 37 63,245,985
// 38 102,334,154
// 39 165,580,140
// 40 267,914,295
// 41 433,494,436
// 42 701,408,732
// 43 1,134,903,169
// 44 1,836,311,902
// 45 2,971,215,072
//
// E.g., if, in a particular instantiation, the maximum number of nodes in a
// tree instance is 1,000,000, the maximum depth should be 28.
// You pick 28 because MN(28) is 832,039, which is less than or equal to
// 1,000,000, and MN(29) is 1,346,268, which is strictly greater than 1,000,000.
template <class Abstractor,
unsigned maxDepth = 32,
class BSet = AVLTreeDefaultBSet<maxDepth> >
class AVLTree {
public:
typedef typename Abstractor::key key;
typedef typename Abstractor::handle handle;
typedef typename Abstractor::size size;
enum SearchType {
EQUAL = 1,
LESS = 2,
GREATER = 4,
LESS_EQUAL = EQUAL | LESS,
GREATER_EQUAL = EQUAL | GREATER
};
Abstractor& abstractor() { return abs; }
inline handle insert(handle h);
inline handle search(key k, SearchType st = EQUAL);
inline handle search_least();
inline handle search_greatest();
inline handle remove(key k);
inline handle subst(handle new_node);
void purge() { abs.root = null(); }
bool is_empty() { return abs.root == null(); }
AVLTree() { abs.root = null(); }
class Iterator {
public:
// Initialize depth to invalid value, to indicate iterator is
// invalid. (Depth is zero-base.)
Iterator() { depth = ~0U; }
void start_iter(AVLTree& tree, key k, SearchType st = EQUAL) {
// Mask of high bit in an int.
const int kMaskHighBit = (int) ~((~(unsigned) 0) >> 1);
// Save the tree that we're going to iterate through in a
// member variable.
tree_ = &tree;
int cmp, target_cmp;
handle h = tree_->abs.root;
unsigned d = 0;
depth = ~0U;
if (h == null()) {
// Tree is empty.
return;
}
if (st & LESS) {
// Key can be greater than key of starting node.
target_cmp = 1;
} else if (st & GREATER) {
// Key can be less than key of starting node.
target_cmp = -1;
} else {
// Key must be same as key of starting node.
target_cmp = 0;
}
for (;;) {
cmp = cmp_k_n(k, h);
if (cmp == 0) {
if (st & EQUAL) {
// Equal node was sought and found as starting node.
depth = d;
break;
}
cmp = -target_cmp;
} else if (target_cmp != 0) {
if (!((cmp ^ target_cmp) & kMaskHighBit)) {
// cmp and target_cmp are both negative or both positive.
depth = d;
}
}
h = cmp < 0 ? get_lt(h) : get_gt(h);
if (h == null())
break;
branch[d] = cmp > 0;
path_h[d++] = h;
}
}
void start_iter_least(AVLTree& tree) {
tree_ = &tree;
handle h = tree_->abs.root;
depth = ~0U;
branch.reset();
while (h != null()) {
if (depth != ~0U)
path_h[depth] = h;
depth++;
h = get_lt(h);
}
}
void start_iter_greatest(AVLTree& tree) {
tree_ = &tree;
handle h = tree_->abs.root;
depth = ~0U;
branch.set();
while (h != null()) {
if (depth != ~0U)
path_h[depth] = h;
depth++;
h = get_gt(h);
}
}
handle operator*() {
if (depth == ~0U)
return null();
return depth == 0 ? tree_->abs.root : path_h[depth - 1];
}
void operator++() {
if (depth != ~0U) {
handle h = get_gt(**this);
if (h == null()) {
do {
if (depth == 0) {
depth = ~0U;
break;
}
depth--;
} while (branch[depth]);
} else {
branch[depth] = true;
path_h[depth++] = h;
for (;;) {
h = get_lt(h);
if (h == null())
break;
branch[depth] = false;
path_h[depth++] = h;
}
}
}
}
void operator--() {
if (depth != ~0U) {
handle h = get_lt(**this);
if (h == null()) {
do {
if (depth == 0) {
depth = ~0U;
break;
}
depth--;
} while (!branch[depth]);
} else {
branch[depth] = false;
path_h[depth++] = h;
for (;;) {
h = get_gt(h);
if (h == null())
break;
branch[depth] = true;
path_h[depth++] = h;
}
}
}
}
void operator++(int) { ++(*this); }
void operator--(int) { --(*this); }
protected:
// Tree being iterated over.
AVLTree* tree_;
// Records a path into the tree. If branch[n] is true, indicates
// take greater branch from the nth node in the path, otherwise
// take the less branch. branch[0] gives branch from root, and
// so on.
BSet branch;
// Zero-based depth of path into tree.
unsigned depth;
// Handles of nodes in path from root to current node (returned by *).
handle path_h[maxDepth - 1];
int cmp_k_n(key k, handle h) { return tree_->abs.compare_key_node(k, h); }
int cmp_n_n(handle h1, handle h2) {
return tree_->abs.compare_node_node(h1, h2);
}
handle get_lt(handle h) { return tree_->abs.get_less(h); }
handle get_gt(handle h) { return tree_->abs.get_greater(h); }
handle null() { return tree_->abs.null(); }
};
template <typename fwd_iter> bool build(fwd_iter p, size num_nodes) {
if (num_nodes == 0) {
abs.root = null();
return true;
}
// Gives path to subtree being built. If branch[N] is false, branch
// less from the node at depth N, if true branch greater.
BSet branch;
// If rem[N] is true, then for the current subtree at depth N, it's
// greater subtree has one more node than it's less subtree.
BSet rem;
// Depth of root node of current subtree.
unsigned depth = 0;
// Number of nodes in current subtree.
size num_sub = num_nodes;
// The algorithm relies on a stack of nodes whose less subtree has
// been built, but whose right subtree has not yet been built. The
// stack is implemented as linked list. The nodes are linked
// together by having the "greater" handle of a node set to the
// next node in the list. "less_parent" is the handle of the first
// node in the list.
handle less_parent = null();
// h is root of current subtree, child is one of its children.
handle h, child;
for (;;) {
while (num_sub > 2) {
// Subtract one for root of subtree.
num_sub--;
rem[depth] = !!(num_sub & 1);
branch[depth++] = false;
num_sub >>= 1;
}
if (num_sub == 2) {
// Build a subtree with two nodes, slanting to greater.
// I arbitrarily chose to always have the extra node in the
// greater subtree when there is an odd number of nodes to
// split between the two subtrees.
h = *p;
p++;
child = *p;
p++;
set_lt(child, null());
set_gt(child, null());
set_bf(child, 0);
set_gt(h, child);
set_lt(h, null());
set_bf(h, 1);
} else { // num_sub == 1
// Build a subtree with one node.
h = *p;
p++;
set_lt(h, null());
set_gt(h, null());
set_bf(h, 0);
}
while (depth) {
depth--;
if (!branch[depth]) {
// We've completed a less subtree.
break;
}
// We've completed a greater subtree, so attach it to
// its parent (that is less than it). We pop the parent
// off the stack of less parents.
child = h;
h = less_parent;
less_parent = get_gt(h);
set_gt(h, child);
// num_sub = 2 * (num_sub - rem[depth]) + rem[depth] + 1
num_sub <<= 1;
num_sub += 1 - rem[depth];
if (num_sub & (num_sub - 1)) {
// num_sub is not a power of 2
set_bf(h, 0);
} else {
// num_sub is a power of 2
set_bf(h, 1);
}
}
if (num_sub == num_nodes) {
// We've completed the full tree.
break;
}
// The subtree we've completed is the less subtree of the
// next node in the sequence.
child = h;
h = *p;
p++;
set_lt(h, child);
// Put h into stack of less parents.
set_gt(h, less_parent);
less_parent = h;
// Proceed to creating greater than subtree of h.
branch[depth] = true;
num_sub += rem[depth++];
} // end for (;;)
abs.root = h;
return true;
}
protected:
friend class Iterator;
// Create a class whose sole purpose is to take advantage of
// the "empty member" optimization.
struct abs_plus_root : public Abstractor {
// The handle of the root element in the AVL tree.
handle root;
};
abs_plus_root abs;
handle get_lt(handle h) { return abs.get_less(h); }
void set_lt(handle h, handle lh) { abs.set_less(h, lh); }
handle get_gt(handle h) { return abs.get_greater(h); }
void set_gt(handle h, handle gh) { abs.set_greater(h, gh); }
int get_bf(handle h) { return abs.get_balance_factor(h); }
void set_bf(handle h, int bf) { abs.set_balance_factor(h, bf); }
int cmp_k_n(key k, handle h) { return abs.compare_key_node(k, h); }
int cmp_n_n(handle h1, handle h2) { return abs.compare_node_node(h1, h2); }
handle null() { return abs.null(); }
private:
// Balances subtree, returns handle of root node of subtree
// after balancing.
handle balance(handle bal_h) {
handle deep_h;
// Either the "greater than" or the "less than" subtree of
// this node has to be 2 levels deeper (or else it wouldn't
// need balancing).
if (get_bf(bal_h) > 0) {
// "Greater than" subtree is deeper.
deep_h = get_gt(bal_h);
if (get_bf(deep_h) < 0) {
handle old_h = bal_h;
bal_h = get_lt(deep_h);
set_gt(old_h, get_lt(bal_h));
set_lt(deep_h, get_gt(bal_h));
set_lt(bal_h, old_h);
set_gt(bal_h, deep_h);
int bf = get_bf(bal_h);
if (bf != 0) {
if (bf > 0) {
set_bf(old_h, -1);
set_bf(deep_h, 0);
} else {
set_bf(deep_h, 1);
set_bf(old_h, 0);
}
set_bf(bal_h, 0);
} else {
set_bf(old_h, 0);
set_bf(deep_h, 0);
}
} else {
set_gt(bal_h, get_lt(deep_h));
set_lt(deep_h, bal_h);
if (get_bf(deep_h) == 0) {
set_bf(deep_h, -1);
set_bf(bal_h, 1);
} else {
set_bf(deep_h, 0);
set_bf(bal_h, 0);
}
bal_h = deep_h;
}
} else {
// "Less than" subtree is deeper.
deep_h = get_lt(bal_h);
if (get_bf(deep_h) > 0) {
handle old_h = bal_h;
bal_h = get_gt(deep_h);
set_lt(old_h, get_gt(bal_h));
set_gt(deep_h, get_lt(bal_h));
set_gt(bal_h, old_h);
set_lt(bal_h, deep_h);
int bf = get_bf(bal_h);
if (bf != 0) {
if (bf < 0) {
set_bf(old_h, 1);
set_bf(deep_h, 0);
} else {
set_bf(deep_h, -1);
set_bf(old_h, 0);
}
set_bf(bal_h, 0);
} else {
set_bf(old_h, 0);
set_bf(deep_h, 0);
}
} else {
set_lt(bal_h, get_gt(deep_h));
set_gt(deep_h, bal_h);
if (get_bf(deep_h) == 0) {
set_bf(deep_h, 1);
set_bf(bal_h, -1);
} else {
set_bf(deep_h, 0);
set_bf(bal_h, 0);
}
bal_h = deep_h;
}
}
return bal_h;
}
};
template <class Abstractor, unsigned maxDepth, class BSet>
inline typename AVLTree<Abstractor, maxDepth, BSet>::handle
AVLTree<Abstractor, maxDepth, BSet>::insert(handle h) {
set_lt(h, null());
set_gt(h, null());
set_bf(h, 0);
if (abs.root == null()) {
abs.root = h;
} else {
// Last unbalanced node encountered in search for insertion point.
handle unbal = null();
// Parent of last unbalanced node.
handle parent_unbal = null();
// Balance factor of last unbalanced node.
int unbal_bf;
// Zero-based depth in tree.
unsigned depth = 0, unbal_depth = 0;
// Records a path into the tree. If branch[n] is true, indicates
// take greater branch from the nth node in the path, otherwise
// take the less branch. branch[0] gives branch from root, and
// so on.
BSet branch;
handle hh = abs.root;
handle parent = null();
int cmp;
do {
if (get_bf(hh) != 0) {
unbal = hh;
parent_unbal = parent;
unbal_depth = depth;
}
cmp = cmp_n_n(h, hh);
if (cmp == 0) {
// Duplicate key.
return hh;
}
parent = hh;
hh = cmp < 0 ? get_lt(hh) : get_gt(hh);
branch[depth++] = cmp > 0;
} while (hh != null());
// Add node to insert as leaf of tree.
if (cmp < 0)
set_lt(parent, h);
else
set_gt(parent, h);
depth = unbal_depth;
if (unbal == null()) {
hh = abs.root;
} else {
cmp = branch[depth++] ? 1 : -1;
unbal_bf = get_bf(unbal);
if (cmp < 0)
unbal_bf--;
else // cmp > 0
unbal_bf++;
hh = cmp < 0 ? get_lt(unbal) : get_gt(unbal);
if ((unbal_bf != -2) && (unbal_bf != 2)) {
// No rebalancing of tree is necessary.
set_bf(unbal, unbal_bf);
unbal = null();
}
}
if (hh != null()) {
while (h != hh) {
cmp = branch[depth++] ? 1 : -1;
if (cmp < 0) {
set_bf(hh, -1);
hh = get_lt(hh);
} else { // cmp > 0
set_bf(hh, 1);
hh = get_gt(hh);
}
}
}
if (unbal != null()) {
unbal = balance(unbal);
if (parent_unbal == null()) {
abs.root = unbal;
} else {
depth = unbal_depth - 1;
cmp = branch[depth] ? 1 : -1;
if (cmp < 0)
set_lt(parent_unbal, unbal);
else // cmp > 0
set_gt(parent_unbal, unbal);
}
}
}
return h;
}
template <class Abstractor, unsigned maxDepth, class BSet>
inline typename AVLTree<Abstractor, maxDepth, BSet>::handle
AVLTree<Abstractor, maxDepth, BSet>::search(
key k,
typename AVLTree<Abstractor, maxDepth, BSet>::SearchType st) {
const int kMaskHighBit = (int) ~((~(unsigned) 0) >> 1);
int cmp, target_cmp;
handle match_h = null();
handle h = abs.root;
if (st & LESS)
target_cmp = 1;
else if (st & GREATER)
target_cmp = -1;
else
target_cmp = 0;
while (h != null()) {
cmp = cmp_k_n(k, h);
if (cmp == 0) {
if (st & EQUAL) {
match_h = h;
break;
}
cmp = -target_cmp;
} else if (target_cmp != 0) {
if (!((cmp ^ target_cmp) & kMaskHighBit)) {
// cmp and target_cmp are both positive or both negative.
match_h = h;
}
}
h = cmp < 0 ? get_lt(h) : get_gt(h);
}
return match_h;
}
template <class Abstractor, unsigned maxDepth, class BSet>
inline typename AVLTree<Abstractor, maxDepth, BSet>::handle
AVLTree<Abstractor, maxDepth, BSet>::search_least() {
handle h = abs.root, parent = null();
while (h != null()) {
parent = h;
h = get_lt(h);
}
return parent;
}
template <class Abstractor, unsigned maxDepth, class BSet>
inline typename AVLTree<Abstractor, maxDepth, BSet>::handle
AVLTree<Abstractor, maxDepth, BSet>::search_greatest() {
handle h = abs.root, parent = null();
while (h != null()) {
parent = h;
h = get_gt(h);
}
return parent;
}
template <class Abstractor, unsigned maxDepth, class BSet>
inline typename AVLTree<Abstractor, maxDepth, BSet>::handle
AVLTree<Abstractor, maxDepth, BSet>::remove(key k) {
// Zero-based depth in tree.
unsigned depth = 0, rm_depth;
// Records a path into the tree. If branch[n] is true, indicates
// take greater branch from the nth node in the path, otherwise
// take the less branch. branch[0] gives branch from root, and
// so on.
BSet branch;
handle h = abs.root;
handle parent = null(), child;
int cmp, cmp_shortened_sub_with_path = 0;
for (;;) {
if (h == null()) {
// No node in tree with given key.
return null();
}
cmp = cmp_k_n(k, h);
if (cmp == 0) {
// Found node to remove.
break;
}
parent = h;
h = cmp < 0 ? get_lt(h) : get_gt(h);
branch[depth++] = cmp > 0;
cmp_shortened_sub_with_path = cmp;
}
handle rm = h;
handle parent_rm = parent;
rm_depth = depth;
// If the node to remove is not a leaf node, we need to get a
// leaf node, or a node with a single leaf as its child, to put
// in the place of the node to remove. We will get the greatest
// node in the less subtree (of the node to remove), or the least
// node in the greater subtree. We take the leaf node from the
// deeper subtree, if there is one.
if (get_bf(h) < 0) {
child = get_lt(h);
branch[depth] = false;
cmp = -1;
} else {
child = get_gt(h);
branch[depth] = true;
cmp = 1;
}
depth++;
if (child != null()) {
cmp = -cmp;
do {
parent = h;
h = child;
if (cmp < 0) {
child = get_lt(h);
branch[depth] = false;
} else {
child = get_gt(h);
branch[depth] = true;
}
depth++;
} while (child != null());
if (parent == rm) {
// Only went through do loop once. Deleted node will be replaced
// in the tree structure by one of its immediate children.
cmp_shortened_sub_with_path = -cmp;
} else {
cmp_shortened_sub_with_path = cmp;
}
// Get the handle of the opposite child, which may not be null.
child = cmp > 0 ? get_lt(h) : get_gt(h);
}
if (parent == null()) {
// There were only 1 or 2 nodes in this tree.
abs.root = child;
} else if (cmp_shortened_sub_with_path < 0) {
set_lt(parent, child);
} else {
set_gt(parent, child);
}
// "path" is the parent of the subtree being eliminated or reduced
// from a depth of 2 to 1. If "path" is the node to be removed, we
// set path to the node we're about to poke into the position of the
// node to be removed.
handle path = parent == rm ? h : parent;
if (h != rm) {
// Poke in the replacement for the node to be removed.
set_lt(h, get_lt(rm));
set_gt(h, get_gt(rm));
set_bf(h, get_bf(rm));
if (parent_rm == null()) {
abs.root = h;
} else {
depth = rm_depth - 1;
if (branch[depth])
set_gt(parent_rm, h);
else
set_lt(parent_rm, h);
}
}
if (path != null()) {
// Create a temporary linked list from the parent of the path node
// to the root node.
h = abs.root;
parent = null();
depth = 0;
while (h != path) {
if (branch[depth++]) {
child = get_gt(h);
set_gt(h, parent);
} else {
child = get_lt(h);
set_lt(h, parent);
}
parent = h;
h = child;
}
// Climb from the path node to the root node using the linked
// list, restoring the tree structure and rebalancing as necessary.
bool reduced_depth = true;
int bf;
cmp = cmp_shortened_sub_with_path;
for (;;) {
if (reduced_depth) {
bf = get_bf(h);
if (cmp < 0)
bf++;
else // cmp > 0
bf--;
if ((bf == -2) || (bf == 2)) {
h = balance(h);
bf = get_bf(h);
} else {
set_bf(h, bf);
}
reduced_depth = (bf == 0);
}
if (parent == null())
break;
child = h;
h = parent;
cmp = branch[--depth] ? 1 : -1;
if (cmp < 0) {
parent = get_lt(h);
set_lt(h, child);
} else {
parent = get_gt(h);
set_gt(h, child);
}
}
abs.root = h;
}
return rm;
}
template <class Abstractor, unsigned maxDepth, class BSet>
inline typename AVLTree<Abstractor, maxDepth, BSet>::handle
AVLTree<Abstractor, maxDepth, BSet>::subst(handle new_node) {
handle h = abs.root;
handle parent = null();
int cmp, last_cmp;
// Search for node already in tree with same key.
for (;;) {
if (h == null()) {
// No node in tree with same key as new node.
return null();
}
cmp = cmp_n_n(new_node, h);
if (cmp == 0) {
// Found the node to substitute new one for.
break;
}
last_cmp = cmp;
parent = h;
h = cmp < 0 ? get_lt(h) : get_gt(h);
}
// Copy tree housekeeping fields from node in tree to new node.
set_lt(new_node, get_lt(h));
set_gt(new_node, get_gt(h));
set_bf(new_node, get_bf(h));
if (parent == null()) {
// New node is also new root.
abs.root = new_node;
} else {
// Make parent point to new node.
if (last_cmp < 0)
set_lt(parent, new_node);
else
set_gt(parent, new_node);
}
return h;
}
} // namespace content
#endif // CONTENT_BROWSER_INDEXED_DB_LEVELDB_AVLTREE_H_
|