summaryrefslogtreecommitdiffstats
path: root/content/browser/speech/endpointer/energy_endpointer.cc
blob: d8d1274994d7abe9048fa40f20f6dc3c01e511ff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// To know more about the algorithm used and the original code which this is
// based of, see
// https://wiki.corp.google.com/twiki/bin/view/Main/ChromeGoogleCodeXRef

#include "content/browser/speech/endpointer/energy_endpointer.h"

#include <math.h>

#include "base/logging.h"

namespace {

// Returns the RMS (quadratic mean) of the input signal.
float RMS(const int16* samples, int num_samples) {
  int64 ssq_int64 = 0;
  int64 sum_int64 = 0;
  for (int i = 0; i < num_samples; ++i) {
    sum_int64 += samples[i];
    ssq_int64 += samples[i] * samples[i];
  }
  // now convert to floats.
  double sum = static_cast<double>(sum_int64);
  sum /= num_samples;
  double ssq = static_cast<double>(ssq_int64);
  return static_cast<float>(sqrt((ssq / num_samples) - (sum * sum)));
}

int64 Secs2Usecs(float seconds) {
  return static_cast<int64>(0.5 + (1.0e6 * seconds));
}

float GetDecibel(float value) {
  if (value > 1.0e-100)
    return 20 * log10(value);
  return -2000.0;
}

}  // namespace

namespace content {

// Stores threshold-crossing histories for making decisions about the speech
// state.
class EnergyEndpointer::HistoryRing {
 public:
  HistoryRing() : insertion_index_(0) {}

  // Resets the ring to |size| elements each with state |initial_state|
  void SetRing(int size, bool initial_state);

  // Inserts a new entry into the ring and drops the oldest entry.
  void Insert(int64 time_us, bool decision);

  // Returns the time in microseconds of the most recently added entry.
  int64 EndTime() const;

  // Returns the sum of all intervals during which 'decision' is true within
  // the time in seconds specified by 'duration'. The returned interval is
  // in seconds.
  float RingSum(float duration_sec);

 private:
  struct DecisionPoint {
    int64 time_us;
    bool decision;
  };

  std::vector<DecisionPoint> decision_points_;
  int insertion_index_;  // Index at which the next item gets added/inserted.

  DISALLOW_COPY_AND_ASSIGN(HistoryRing);
};

void EnergyEndpointer::HistoryRing::SetRing(int size, bool initial_state) {
  insertion_index_ = 0;
  decision_points_.clear();
  DecisionPoint init = { -1, initial_state };
  decision_points_.resize(size, init);
}

void EnergyEndpointer::HistoryRing::Insert(int64 time_us, bool decision) {
  decision_points_[insertion_index_].time_us = time_us;
  decision_points_[insertion_index_].decision = decision;
  insertion_index_ = (insertion_index_ + 1) % decision_points_.size();
}

int64 EnergyEndpointer::HistoryRing::EndTime() const {
  int ind = insertion_index_ - 1;
  if (ind < 0)
    ind = decision_points_.size() - 1;
  return decision_points_[ind].time_us;
}

float EnergyEndpointer::HistoryRing::RingSum(float duration_sec) {
  if (!decision_points_.size())
    return 0.0;

  int64 sum_us = 0;
  int ind = insertion_index_ - 1;
  if (ind < 0)
    ind = decision_points_.size() - 1;
  int64 end_us = decision_points_[ind].time_us;
  bool is_on = decision_points_[ind].decision;
  int64 start_us = end_us - static_cast<int64>(0.5 + (1.0e6 * duration_sec));
  if (start_us < 0)
    start_us = 0;
  size_t n_summed = 1;  // n points ==> (n-1) intervals
  while ((decision_points_[ind].time_us > start_us) &&
         (n_summed < decision_points_.size())) {
    --ind;
    if (ind < 0)
      ind = decision_points_.size() - 1;
    if (is_on)
      sum_us += end_us - decision_points_[ind].time_us;
    is_on = decision_points_[ind].decision;
    end_us = decision_points_[ind].time_us;
    n_summed++;
  }

  return 1.0e-6f * sum_us;  //  Returns total time that was super threshold.
}

EnergyEndpointer::EnergyEndpointer()
    : status_(EP_PRE_SPEECH),
      offset_confirm_dur_sec_(0),
      endpointer_time_us_(0),
      fast_update_frames_(0),
      frame_counter_(0),
      max_window_dur_(4.0),
      sample_rate_(0),
      history_(new HistoryRing()),
      decision_threshold_(0),
      estimating_environment_(false),
      noise_level_(0),
      rms_adapt_(0),
      start_lag_(0),
      end_lag_(0),
      user_input_start_time_us_(0) {
}

EnergyEndpointer::~EnergyEndpointer() {
}

int EnergyEndpointer::TimeToFrame(float time) const {
  return static_cast<int32>(0.5 + (time / params_.frame_period()));
}

void EnergyEndpointer::Restart(bool reset_threshold) {
  status_ = EP_PRE_SPEECH;
  user_input_start_time_us_ = 0;

  if (reset_threshold) {
    decision_threshold_ = params_.decision_threshold();
    rms_adapt_ = decision_threshold_;
    noise_level_ = params_.decision_threshold() / 2.0f;
    frame_counter_ = 0;  // Used for rapid initial update of levels.
  }

  // Set up the memories to hold the history windows.
  history_->SetRing(TimeToFrame(max_window_dur_), false);

  // Flag that indicates that current input should be used for
  // estimating the environment. The user has not yet started input
  // by e.g. pressed the push-to-talk button. By default, this is
  // false for backward compatibility.
  estimating_environment_ = false;
}

void EnergyEndpointer::Init(const EnergyEndpointerParams& params) {
  params_ = params;

  // Find the longest history interval to be used, and make the ring
  // large enough to accommodate that number of frames.  NOTE: This
  // depends upon ep_frame_period being set correctly in the factory
  // that did this instantiation.
  max_window_dur_ = params_.onset_window();
  if (params_.speech_on_window() > max_window_dur_)
    max_window_dur_ = params_.speech_on_window();
  if (params_.offset_window() > max_window_dur_)
    max_window_dur_ = params_.offset_window();
  Restart(true);

  offset_confirm_dur_sec_ = params_.offset_window() -
                            params_.offset_confirm_dur();
  if (offset_confirm_dur_sec_ < 0.0)
    offset_confirm_dur_sec_ = 0.0;

  user_input_start_time_us_ = 0;

  // Flag that indicates that  current input should be used for
  // estimating the environment. The user has not yet started input
  // by e.g. pressed the push-to-talk button. By default, this is
  // false for backward compatibility.
  estimating_environment_ = false;
  // The initial value of the noise and speech levels is inconsequential.
  // The level of the first frame will overwrite these values.
  noise_level_ = params_.decision_threshold() / 2.0f;
  fast_update_frames_ =
      static_cast<int64>(params_.fast_update_dur() / params_.frame_period());

  frame_counter_ = 0;  // Used for rapid initial update of levels.

  sample_rate_ = params_.sample_rate();
  start_lag_ = static_cast<int>(sample_rate_ /
                                params_.max_fundamental_frequency());
  end_lag_ = static_cast<int>(sample_rate_ /
                              params_.min_fundamental_frequency());
}

void EnergyEndpointer::StartSession() {
  Restart(true);
}

void EnergyEndpointer::EndSession() {
  status_ = EP_POST_SPEECH;
}

void EnergyEndpointer::SetEnvironmentEstimationMode() {
  Restart(true);
  estimating_environment_ = true;
}

void EnergyEndpointer::SetUserInputMode() {
  estimating_environment_ = false;
  user_input_start_time_us_ = endpointer_time_us_;
}

void EnergyEndpointer::ProcessAudioFrame(int64 time_us,
                                         const int16* samples,
                                         int num_samples,
                                         float* rms_out) {
  endpointer_time_us_ = time_us;
  float rms = RMS(samples, num_samples);

  // Check that this is user input audio vs. pre-input adaptation audio.
  // Input audio starts when the user indicates start of input, by e.g.
  // pressing push-to-talk. Audio recieved prior to that is used to update
  // noise and speech level estimates.
  if (!estimating_environment_) {
    bool decision = false;
    if ((endpointer_time_us_ - user_input_start_time_us_) <
        Secs2Usecs(params_.contamination_rejection_period())) {
      decision = false;
      DVLOG(1) << "decision: forced to false, time: " << endpointer_time_us_;
    } else {
      decision = (rms > decision_threshold_);
    }

    history_->Insert(endpointer_time_us_, decision);

    switch (status_) {
      case EP_PRE_SPEECH:
        if (history_->RingSum(params_.onset_window()) >
            params_.onset_detect_dur()) {
          status_ = EP_POSSIBLE_ONSET;
        }
        break;

      case EP_POSSIBLE_ONSET: {
        float tsum = history_->RingSum(params_.onset_window());
        if (tsum > params_.onset_confirm_dur()) {
          status_ = EP_SPEECH_PRESENT;
        } else {  // If signal is not maintained, drop back to pre-speech.
          if (tsum <= params_.onset_detect_dur())
            status_ = EP_PRE_SPEECH;
        }
        break;
      }

      case EP_SPEECH_PRESENT: {
        // To induce hysteresis in the state residency, we allow a
        // smaller residency time in the on_ring, than was required to
        // enter the SPEECH_PERSENT state.
        float on_time = history_->RingSum(params_.speech_on_window());
        if (on_time < params_.on_maintain_dur())
          status_ = EP_POSSIBLE_OFFSET;
        break;
      }

      case EP_POSSIBLE_OFFSET:
        if (history_->RingSum(params_.offset_window()) <=
            offset_confirm_dur_sec_) {
          // Note that this offset time may be beyond the end
          // of the input buffer in a real-time system.  It will be up
          // to the RecognizerSession to decide what to do.
          status_ = EP_PRE_SPEECH;  // Automatically reset for next utterance.
        } else {  // If speech picks up again we allow return to SPEECH_PRESENT.
          if (history_->RingSum(params_.speech_on_window()) >=
              params_.on_maintain_dur())
            status_ = EP_SPEECH_PRESENT;
        }
        break;

      default:
        LOG(WARNING) << "Invalid case in switch: " << status_;
        break;
    }

    // If this is a quiet, non-speech region, slowly adapt the detection
    // threshold to be about 6dB above the average RMS.
    if ((!decision) && (status_ == EP_PRE_SPEECH)) {
      decision_threshold_ = (0.98f * decision_threshold_) + (0.02f * 2 * rms);
      rms_adapt_ = decision_threshold_;
    } else {
      // If this is in a speech region, adapt the decision threshold to
      // be about 10dB below the average RMS. If the noise level is high,
      // the threshold is pushed up.
      // Adaptation up to a higher level is 5 times faster than decay to
      // a lower level.
      if ((status_ == EP_SPEECH_PRESENT) && decision) {
        if (rms_adapt_ > rms) {
          rms_adapt_ = (0.99f * rms_adapt_) + (0.01f * rms);
        } else {
          rms_adapt_ = (0.95f * rms_adapt_) + (0.05f * rms);
        }
        float target_threshold = 0.3f * rms_adapt_ +  noise_level_;
        decision_threshold_ = (.90f * decision_threshold_) +
                              (0.10f * target_threshold);
      }
    }

    // Set a floor
    if (decision_threshold_ < params_.min_decision_threshold())
      decision_threshold_ = params_.min_decision_threshold();
  }

  // Update speech and noise levels.
  UpdateLevels(rms);
  ++frame_counter_;

  if (rms_out)
    *rms_out = GetDecibel(rms);
}

float EnergyEndpointer::GetNoiseLevelDb() const {
  return GetDecibel(noise_level_);
}

void EnergyEndpointer::UpdateLevels(float rms) {
  // Update quickly initially. We assume this is noise and that
  // speech is 6dB above the noise.
  if (frame_counter_ < fast_update_frames_) {
    // Alpha increases from 0 to (k-1)/k where k is the number of time
    // steps in the initial adaptation period.
    float alpha = static_cast<float>(frame_counter_) /
        static_cast<float>(fast_update_frames_);
    noise_level_ = (alpha * noise_level_) + ((1 - alpha) * rms);
    DVLOG(1) << "FAST UPDATE, frame_counter_ " << frame_counter_
             << ", fast_update_frames_ " << fast_update_frames_;
  } else {
    // Update Noise level. The noise level adapts quickly downward, but
    // slowly upward. The noise_level_ parameter is not currently used
    // for threshold adaptation. It is used for UI feedback.
    if (noise_level_ < rms)
      noise_level_ = (0.999f * noise_level_) + (0.001f * rms);
    else
      noise_level_ = (0.95f * noise_level_) + (0.05f * rms);
  }
  if (estimating_environment_ || (frame_counter_ < fast_update_frames_)) {
    decision_threshold_ = noise_level_ * 2; // 6dB above noise level.
    // Set a floor
    if (decision_threshold_ < params_.min_decision_threshold())
      decision_threshold_ = params_.min_decision_threshold();
  }
}

EpStatus EnergyEndpointer::Status(int64* status_time)  const {
  *status_time = history_->EndTime();
  return status_;
}

}  // namespace content