1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
|
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <stdio.h>
#include <cmath>
#include <string>
#include <vector>
#include <GLES2/gl2.h>
#include <GLES2/gl2ext.h>
#include <GLES2/gl2extchromium.h>
#include "base/at_exit.h"
#include "base/command_line.h"
#include "base/file_util.h"
#include "base/stringprintf.h"
#include "base/time.h"
#include "content/common/gpu/client/gl_helper.h"
#include "content/common/gpu/client/gl_helper_scaling.h"
#include "content/public/test/unittest_test_suite.h"
#include "content/test/content_test_suite.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/skia/include/core/SkBitmap.h"
#include "third_party/skia/include/core/SkTypes.h"
#include "ui/gl/gl_surface.h"
#include "webkit/common/gpu/webgraphicscontext3d_in_process_command_buffer_impl.h"
#include "webkit/common/gpu/webgraphicscontext3d_in_process_impl.h"
#if defined(OS_MACOSX)
#include "base/mac/scoped_nsautorelease_pool.h"
#endif
#if defined(TOOLKIT_GTK)
#include "ui/gfx/gtk_util.h"
#endif
namespace content {
using WebKit::WebGLId;
content::GLHelper::ScalerQuality kQualities[] = {
content::GLHelper::SCALER_QUALITY_BEST,
content::GLHelper::SCALER_QUALITY_GOOD,
content::GLHelper::SCALER_QUALITY_FAST,
};
const char *kQualityNames[] = {
"best",
"good",
"fast",
};
class GLHelperTest : public testing::Test {
protected:
virtual void SetUp() {
WebGraphicsContext3D::Attributes attributes;
context_.reset(
webkit::gpu::WebGraphicsContext3DInProcessCommandBufferImpl::
CreateOffscreenContext(attributes));
context_->makeContextCurrent();
helper_.reset(new content::GLHelper(context_.get()));
helper_scaling_.reset(new content::GLHelperScaling(
context_.get(),
helper_.get()));
}
virtual void TearDown() {
helper_scaling_.reset(NULL);
helper_.reset(NULL);
context_.reset(NULL);
}
// Bicubic filter kernel function.
static float Bicubic(float x) {
const float a = -0.5;
x = std::abs(x);
float x2 = x * x;
float x3 = x2 * x;
if (x <= 1) {
return (a + 2) * x3 - (a + 3) * x2 + 1;
} else if (x < 2) {
return a * x3 - 5 * a * x2 + 8 * a * x - 4 * a;
} else {
return 0.0f;
}
}
// Look up a single R/G/B/A value.
// Clamp x/y.
int Channel(SkBitmap* pixels, int x, int y, int c) {
uint32 *data = pixels->getAddr32(
std::max(0, std::min(x, pixels->width() - 1)),
std::max(0, std::min(y, pixels->height() - 1)));
return (*data) >> (c * 8) & 0xff;
}
// Set a single R/G/B/A value.
void SetChannel(SkBitmap* pixels, int x, int y, int c, int v) {
DCHECK_GE(x, 0);
DCHECK_GE(y, 0);
DCHECK_LT(x, pixels->width());
DCHECK_LT(y, pixels->height());
uint32 *data = pixels->getAddr32(x, y);
v = std::max(0, std::min(v, 255));
*data = (*data & ~(0xffu << (c * 8))) | (v << (c * 8));
}
// Print all the R, G, B or A values from an SkBitmap in a
// human-readable format.
void PrintChannel(SkBitmap* pixels, int c) {
for (int y = 0; y < pixels->height(); y++) {
for (int x = 0; x < pixels->width(); x++) {
printf("%3d, ", Channel(pixels, x, y, c));
}
printf("\n");
}
}
// Print out the individual steps of a scaler pipeline.
std::string PrintStages(
const std::vector<GLHelperScaling::ScalerStage> &scaler_stages) {
std::string ret;
for (size_t i = 0; i < scaler_stages.size(); i++) {
ret.append(base::StringPrintf("%dx%d -> %dx%d ",
scaler_stages[i].src_size.width(),
scaler_stages[i].src_size.height(),
scaler_stages[i].dst_size.width(),
scaler_stages[i].dst_size.height()));
bool xy_matters = false;
switch (scaler_stages[i].shader) {
case GLHelperScaling::SHADER_BILINEAR:
ret.append("bilinear");
break;
case GLHelperScaling::SHADER_BILINEAR2:
ret.append("bilinear2");
xy_matters = true;
break;
case GLHelperScaling::SHADER_BILINEAR3:
ret.append("bilinear3");
xy_matters = true;
break;
case GLHelperScaling::SHADER_BILINEAR4:
ret.append("bilinear4");
xy_matters = true;
break;
case GLHelperScaling::SHADER_BILINEAR2X2:
ret.append("bilinear2x2");
break;
case GLHelperScaling::SHADER_BICUBIC_UPSCALE:
ret.append("bicubic upscale");
xy_matters = true;
break;
case GLHelperScaling::SHADER_BICUBIC_HALF_1D:
ret.append("bicubic 1/2");
xy_matters = true;
break;
}
if (xy_matters) {
if (scaler_stages[i].scale_x) {
ret.append(" X");
} else {
ret.append(" Y");
}
}
ret.append("\n");
}
return ret;
}
bool CheckScale(double scale, int samples, bool already_scaled) {
// 1:1 is valid if there is one sample.
if (samples == 1 && scale == 1.0) {
return true;
}
// Is it an exact down-scale (50%, 25%, etc.?)
if (scale == 2.0 * samples) {
return true;
}
// Upscales, only valid if we haven't already scaled in this dimension.
if (!already_scaled) {
// Is it a valid bilinear upscale?
if (samples == 1 && scale <= 1.0) {
return true;
}
// Multi-sample upscale-downscale combination?
if (scale > samples / 2.0 && scale < samples) {
return true;
}
}
return false;
}
// Make sure that the stages of the scaler pipeline are sane.
void ValidateScalerStages(
content::GLHelper::ScalerQuality quality,
const std::vector<GLHelperScaling::ScalerStage> &scaler_stages,
const std::string& message) {
bool previous_error = HasFailure();
// First, check that the input size for each stage is equal to
// the output size of the previous stage.
for (size_t i = 1; i < scaler_stages.size(); i++) {
EXPECT_EQ(scaler_stages[i - 1].dst_size.width(),
scaler_stages[i].src_size.width());
EXPECT_EQ(scaler_stages[i - 1].dst_size.height(),
scaler_stages[i].src_size.height());
EXPECT_EQ(scaler_stages[i].src_subrect.x(), 0);
EXPECT_EQ(scaler_stages[i].src_subrect.y(), 0);
EXPECT_EQ(scaler_stages[i].src_subrect.width(),
scaler_stages[i].src_size.width());
EXPECT_EQ(scaler_stages[i].src_subrect.height(),
scaler_stages[i].src_size.height());
}
// Used to verify that up-scales are not attempted after some
// other scale.
bool scaled_x = false;
bool scaled_y = false;
for (size_t i = 0; i < scaler_stages.size(); i++) {
// Note: 2.0 means scaling down by 50%
double x_scale =
static_cast<double>(scaler_stages[i].src_subrect.width()) /
static_cast<double>(scaler_stages[i].dst_size.width());
double y_scale =
static_cast<double>(scaler_stages[i].src_subrect.height()) /
static_cast<double>(scaler_stages[i].dst_size.height());
int x_samples = 0;
int y_samples = 0;
// Codify valid scale operations.
switch (scaler_stages[i].shader) {
case GLHelperScaling::SHADER_BILINEAR:
if (quality != content::GLHelper::SCALER_QUALITY_FAST) {
x_samples = 1;
y_samples = 1;
}
break;
case GLHelperScaling::SHADER_BILINEAR2:
x_samples = 2;
y_samples = 1;
break;
case GLHelperScaling::SHADER_BILINEAR3:
x_samples = 3;
y_samples = 1;
break;
case GLHelperScaling::SHADER_BILINEAR4:
x_samples = 4;
y_samples = 1;
break;
case GLHelperScaling::SHADER_BILINEAR2X2:
x_samples = 2;
y_samples = 2;
break;
case GLHelperScaling::SHADER_BICUBIC_UPSCALE:
if (scaler_stages[i].scale_x) {
EXPECT_LT(x_scale, 1.0);
EXPECT_EQ(y_scale, 1.0);
} else {
EXPECT_EQ(x_scale, 1.0);
EXPECT_LT(y_scale, 1.0);
}
break;
case GLHelperScaling::SHADER_BICUBIC_HALF_1D:
if (scaler_stages[i].scale_x) {
EXPECT_EQ(x_scale, 2.0);
EXPECT_EQ(y_scale, 1.0);
} else {
EXPECT_EQ(x_scale, 1.0);
EXPECT_EQ(y_scale, 2.0);
}
break;
}
if (!scaler_stages[i].scale_x) {
std::swap(x_samples, y_samples);
}
if (x_samples) {
EXPECT_TRUE(CheckScale(x_scale, x_samples, scaled_x))
<< "x_scale = " << x_scale;
}
if (y_samples) {
EXPECT_TRUE(CheckScale(y_scale, y_samples, scaled_y))
<< "y_scale = " << y_scale;
}
if (x_scale != 1.0) {
scaled_x = true;
}
if (y_scale != 1.0) {
scaled_y = true;
}
}
if (HasFailure() && !previous_error) {
printf("Invalid scaler stages: %s\n", message.c_str());
printf("Scaler stages:\n%s", PrintStages(scaler_stages).c_str());
}
}
// Compare two bitmaps, make sure that each component of each pixel
// is no more than |maxdiff| apart. If they are not similar enough,
// prints out |truth|, |other|, |source|, |scaler_stages| and |message|.
void Compare(SkBitmap* truth,
SkBitmap* other,
int maxdiff,
SkBitmap* source,
const std::vector<GLHelperScaling::ScalerStage> &scaler_stages,
std::string message) {
EXPECT_EQ(truth->width(), other->width());
EXPECT_EQ(truth->height(), other->height());
for (int x = 0; x < truth->width(); x++) {
for (int y = 0; y < truth->height(); y++) {
for (int c = 0; c < 4; c++) {
int a = Channel(truth, x, y, c);
int b = Channel(other, x, y, c);
EXPECT_NEAR(a, b, maxdiff)
<< " x=" << x
<< " y=" << y
<< " c=" << c
<< " " << message;
if (std::abs(a - b) > maxdiff) {
printf("-------expected--------\n");
PrintChannel(truth, c);
printf("-------actual--------\n");
PrintChannel(other, c);
if (source) {
printf("-------before scaling--------\n");
PrintChannel(source, c);
}
printf("-----Scaler stages------\n%s",
PrintStages(scaler_stages).c_str());
return;
}
}
}
}
}
// Get a single R, G, B or A value as a float.
float ChannelAsFloat(SkBitmap* pixels, int x, int y, int c) {
return Channel(pixels, x, y, c) / 255.0;
}
// Works like a GL_LINEAR lookup on an SkBitmap.
float Bilinear(SkBitmap* pixels, float x, float y, int c) {
x -= 0.5;
y -= 0.5;
int base_x = static_cast<int>(floorf(x));
int base_y = static_cast<int>(floorf(y));
x -= base_x;
y -= base_y;
return (ChannelAsFloat(pixels, base_x, base_y, c) * (1 - x) * (1 - y) +
ChannelAsFloat(pixels, base_x + 1, base_y, c) * x * (1 - y) +
ChannelAsFloat(pixels, base_x, base_y + 1, c) * (1 - x) * y +
ChannelAsFloat(pixels, base_x + 1, base_y + 1, c) * x * y);
}
// Very slow bicubic / bilinear scaler for reference.
void ScaleSlow(SkBitmap* input,
SkBitmap* output,
content::GLHelper::ScalerQuality quality) {
float xscale = static_cast<float>(input->width()) / output->width();
float yscale = static_cast<float>(input->height()) / output->height();
float clamped_xscale = xscale < 1.0 ? 1.0 : 1.0 / xscale;
float clamped_yscale = yscale < 1.0 ? 1.0 : 1.0 / yscale;
for (int dst_y = 0; dst_y < output->height(); dst_y++) {
for (int dst_x = 0; dst_x < output->width(); dst_x++) {
for (int channel = 0; channel < 4; channel++) {
float dst_x_in_src = (dst_x + 0.5f) * xscale;
float dst_y_in_src = (dst_y + 0.5f) * yscale;
float value = 0.0f;
float sum = 0.0f;
switch (quality) {
case content::GLHelper::SCALER_QUALITY_BEST:
for (int src_y = -10; src_y < input->height() + 10; ++src_y) {
float coeff_y = Bicubic(
(src_y + 0.5f - dst_y_in_src) * clamped_yscale);
if (coeff_y == 0.0f) {
continue;
}
for (int src_x = -10; src_x < input->width() + 10; ++src_x) {
float coeff = coeff_y * Bicubic(
(src_x + 0.5f - dst_x_in_src) * clamped_xscale);
if (coeff == 0.0f) {
continue;
}
sum += coeff;
float c = ChannelAsFloat(input, src_x, src_y, channel);
value += c * coeff;
}
}
break;
case content::GLHelper::SCALER_QUALITY_GOOD: {
int xshift = 0, yshift = 0;
while ((output->width() << xshift) < input->width()) {
xshift++;
}
while ((output->height() << yshift) < input->height()) {
yshift++;
}
int xmag = 1 << xshift;
int ymag = 1 << yshift;
if (xmag == 4 && output->width() * 3 >= input->width()) {
xmag=3;
}
if (ymag == 4 && output->height() * 3 >= input->height()) {
ymag=3;
}
for (int x = 0; x < xmag; x++) {
for (int y = 0; y < ymag; y++) {
value += Bilinear(input,
(dst_x * xmag + x + 0.5) * xscale / xmag,
(dst_y * ymag + y + 0.5) * yscale / ymag,
channel);
sum += 1.0;
}
}
break;
}
case content::GLHelper::SCALER_QUALITY_FAST:
value = Bilinear(input, dst_x_in_src, dst_y_in_src, channel);
sum = 1.0;
}
value /= sum;
SetChannel(output, dst_x, dst_y, channel,
static_cast<int>(value * 255.0f + 0.5f));
}
}
}
}
// gl_helper scales recursively, so we'll need to do that
// in the reference implementation too.
void ScaleSlowRecursive(SkBitmap* input, SkBitmap* output,
content::GLHelper::ScalerQuality quality) {
if (quality == content::GLHelper::SCALER_QUALITY_FAST ||
quality == content::GLHelper::SCALER_QUALITY_GOOD) {
ScaleSlow(input, output, quality);
return;
}
float xscale = static_cast<float>(output->width()) / input->width();
// This corresponds to all the operations we can do directly.
float yscale = static_cast<float>(output->height()) / input->height();
if ((xscale == 1.0f && yscale == 1.0f) ||
(xscale == 0.5f && yscale == 1.0f) ||
(xscale == 1.0f && yscale == 0.5f) ||
(xscale >= 1.0f && yscale == 1.0f) ||
(xscale == 1.0f && yscale >= 1.0f)) {
ScaleSlow(input, output, quality);
return;
}
// Now we break the problem down into smaller pieces, using the
// operations available.
int xtmp = input->width();
int ytmp = input->height();
if (output->height() != input->height()) {
ytmp = output->height();
while (ytmp < input->height() && ytmp * 2 != input->height()) {
ytmp += ytmp;
}
} else {
xtmp = output->width();
while (xtmp < input->width() && xtmp * 2 != input->width()) {
xtmp += xtmp;
}
}
SkBitmap tmp;
tmp.setConfig(SkBitmap::kARGB_8888_Config, xtmp, ytmp);
tmp.allocPixels();
SkAutoLockPixels lock(tmp);
ScaleSlowRecursive(input, &tmp, quality);
ScaleSlowRecursive(&tmp, output, quality);
}
// Scaling test: Create a test image, scale it using GLHelperScaling
// and a reference implementation and compare the results.
void TestScale(int xsize, int ysize,
int scaled_xsize, int scaled_ysize,
int test_pattern,
size_t quality) {
WebGLId src_texture = context_->createTexture();
WebGLId framebuffer = context_->createFramebuffer();
SkBitmap input_pixels;
input_pixels.setConfig(SkBitmap::kARGB_8888_Config, xsize, ysize);
input_pixels.allocPixels();
SkAutoLockPixels lock(input_pixels);
for (int x = 0; x < xsize; ++x) {
for (int y = 0; y < ysize; ++y) {
switch (test_pattern) {
case 0: // Smooth test pattern
SetChannel(&input_pixels, x, y, 0, x * 10);
SetChannel(&input_pixels, x, y, 1, y * 10);
SetChannel(&input_pixels, x, y, 2, (x + y) * 10);
SetChannel(&input_pixels, x, y, 3, 255);
break;
case 1: // Small blocks
SetChannel(&input_pixels, x, y, 0, x & 1 ? 255 : 0);
SetChannel(&input_pixels, x, y, 1, y & 1 ? 255 : 0);
SetChannel(&input_pixels, x, y, 2, (x + y) & 1 ? 255 : 0);
SetChannel(&input_pixels, x, y, 3, 255);
break;
case 2: // Medium blocks
SetChannel(&input_pixels, x, y, 0, 10 + x/2 * 50);
SetChannel(&input_pixels, x, y, 1, 10 + y/3 * 50);
SetChannel(&input_pixels, x, y, 2, (x + y)/5 * 50 + 5);
SetChannel(&input_pixels, x, y, 3, 255);
break;
}
}
}
context_->bindFramebuffer(GL_FRAMEBUFFER, framebuffer);
context_->bindTexture(GL_TEXTURE_2D, src_texture);
context_->texImage2D(GL_TEXTURE_2D,
0,
GL_RGBA,
xsize,
ysize,
0,
GL_RGBA,
GL_UNSIGNED_BYTE,
input_pixels.getPixels());
std::string message = base::StringPrintf("input size: %dx%d "
"output size: %dx%d "
"pattern: %d quality: %s",
xsize, ysize,
scaled_xsize, scaled_ysize,
test_pattern,
kQualityNames[quality]);
std::vector<GLHelperScaling::ScalerStage> stages;
helper_scaling_->ComputeScalerStages(
kQualities[quality],
gfx::Size(xsize, ysize),
gfx::Rect(0, 0, xsize, ysize),
gfx::Size(scaled_xsize, scaled_ysize),
false,
false,
&stages);
ValidateScalerStages(kQualities[quality], stages, message);
WebGLId dst_texture = helper_->CopyAndScaleTexture(
src_texture,
gfx::Size(xsize, ysize),
gfx::Size(scaled_xsize, scaled_ysize),
false,
kQualities[quality]);
SkBitmap output_pixels;
output_pixels.setConfig(SkBitmap::kARGB_8888_Config,
scaled_xsize, scaled_ysize);
output_pixels.allocPixels();
SkAutoLockPixels output_lock(output_pixels);
helper_->ReadbackTextureSync(
dst_texture,
gfx::Rect(0, 0, scaled_xsize, scaled_ysize),
static_cast<unsigned char *>(output_pixels.getPixels()));
if (xsize == scaled_xsize && ysize == scaled_ysize) {
Compare(&input_pixels,
&output_pixels,
2,
NULL,
stages,
message + " comparing against input");
}
SkBitmap truth_pixels;
truth_pixels.setConfig(SkBitmap::kARGB_8888_Config,
scaled_xsize, scaled_ysize);
truth_pixels.allocPixels();
SkAutoLockPixels truth_lock(truth_pixels);
ScaleSlowRecursive(&input_pixels, &truth_pixels, kQualities[quality]);
Compare(&truth_pixels,
&output_pixels,
2,
&input_pixels,
stages,
message + " comparing against scaled");
context_->deleteTexture(src_texture);
context_->deleteTexture(dst_texture);
context_->deleteFramebuffer(framebuffer);
}
// Create a scaling pipeline and check that it is made up of
// valid scaling operations.
void TestScalerPipeline(size_t quality,
int xsize, int ysize,
int dst_xsize, int dst_ysize) {
std::vector<GLHelperScaling::ScalerStage> stages;
helper_scaling_->ComputeScalerStages(
kQualities[quality],
gfx::Size(xsize, ysize),
gfx::Rect(0, 0, xsize, ysize),
gfx::Size(dst_xsize, dst_ysize),
false,
false,
&stages);
ValidateScalerStages(kQualities[quality], stages,
base::StringPrintf("input size: %dx%d "
"output size: %dx%d "
"quality: %s",
xsize, ysize,
dst_xsize, dst_ysize,
kQualityNames[quality]));
}
// Create a scaling pipeline and make sure that the steps
// are exactly the steps we expect.
void CheckPipeline(content::GLHelper::ScalerQuality quality,
int xsize, int ysize,
int dst_xsize, int dst_ysize,
const std::string &description) {
std::vector<GLHelperScaling::ScalerStage> stages;
helper_scaling_->ComputeScalerStages(
quality,
gfx::Size(xsize, ysize),
gfx::Rect(0, 0, xsize, ysize),
gfx::Size(dst_xsize, dst_ysize),
false,
false,
&stages);
ValidateScalerStages(
content::GLHelper::SCALER_QUALITY_GOOD,
stages,
"");
EXPECT_EQ(PrintStages(stages), description);
}
void TestAddOps(int src,
int dst,
bool scale_x,
bool allow3) {
std::deque<GLHelperScaling::ScaleOp> ops;
GLHelperScaling::ScaleOp::AddOps(src, dst, scale_x, allow3, &ops);
// Scale factor 3 is a special case.
// It is currently only allowed by itself.
if (allow3 && dst * 3 >= src && dst * 2 < src) {
EXPECT_EQ(ops[0].scale_factor, 3);
EXPECT_EQ(ops.size(), 1U);
EXPECT_EQ(ops[0].scale_x, scale_x);
EXPECT_EQ(ops[0].scale_size, dst);
return;
}
for (size_t i = 0; i < ops.size(); i++) {
EXPECT_EQ(ops[i].scale_x, scale_x);
if (i == 0) {
// Only the first op is allowed to be a scale up.
// (Scaling up *after* scaling down would make it fuzzy.)
EXPECT_TRUE(ops[0].scale_factor == 0 ||
ops[0].scale_factor == 2);
} else {
// All other operations must be 50% downscales.
EXPECT_EQ(ops[i].scale_factor, 2);
}
}
// Check that the scale factors make sense and add up.
int tmp = dst;
for (int i = static_cast<int>(ops.size() - 1); i >= 0; i--) {
EXPECT_EQ(tmp, ops[i].scale_size);
if (ops[i].scale_factor == 0) {
EXPECT_EQ(i, 0);
EXPECT_GT(tmp, src);
tmp = src;
} else {
tmp *= ops[i].scale_factor;
}
}
EXPECT_EQ(tmp, src);
}
void CheckPipeline2(int xsize, int ysize,
int dst_xsize, int dst_ysize,
const std::string &description) {
std::vector<GLHelperScaling::ScalerStage> stages;
helper_scaling_->ConvertScalerOpsToScalerStages(
content::GLHelper::SCALER_QUALITY_GOOD,
gfx::Size(xsize, ysize),
gfx::Rect(0, 0, xsize, ysize),
gfx::Size(dst_xsize, dst_ysize),
false,
false,
&x_ops_,
&y_ops_,
&stages);
EXPECT_EQ(x_ops_.size(), 0U);
EXPECT_EQ(y_ops_.size(), 0U);
ValidateScalerStages(
content::GLHelper::SCALER_QUALITY_GOOD,
stages,
"");
EXPECT_EQ(PrintStages(stages), description);
}
void CheckOptimizationsTest() {
// Basic upscale. X and Y should be combined into one pass.
x_ops_.push_back(GLHelperScaling::ScaleOp(0, true, 2000));
y_ops_.push_back(GLHelperScaling::ScaleOp(0, false, 2000));
CheckPipeline2(1024, 768, 2000, 2000,
"1024x768 -> 2000x2000 bilinear\n");
// X scaled 1/2, Y upscaled, should still be one pass.
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 512));
y_ops_.push_back(GLHelperScaling::ScaleOp(0, false, 2000));
CheckPipeline2(1024, 768, 512, 2000,
"1024x768 -> 512x2000 bilinear\n");
// X upscaled, Y scaled 1/2, one bilinear pass
x_ops_.push_back(GLHelperScaling::ScaleOp(0, true, 2000));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 384));
CheckPipeline2(1024, 768, 2000, 384,
"1024x768 -> 2000x384 bilinear\n");
// X scaled 1/2, Y scaled 1/2, one bilinear pass
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 512));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 384));
CheckPipeline2(1024, 768, 2000, 384,
"1024x768 -> 512x384 bilinear\n");
// X scaled 1/2, Y scaled to 60%, one bilinear2 pass.
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 50));
y_ops_.push_back(GLHelperScaling::ScaleOp(0, false, 120));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 60));
CheckPipeline2(100, 100, 50, 60,
"100x100 -> 50x60 bilinear2 Y\n");
// X scaled to 60%, Y scaled 1/2, one bilinear2 pass.
x_ops_.push_back(GLHelperScaling::ScaleOp(0, true, 120));
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 60));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 50));
CheckPipeline2(100, 100, 50, 60,
"100x100 -> 60x50 bilinear2 X\n");
// X scaled to 60%, Y scaled 60%, one bilinear2x2 pass.
x_ops_.push_back(GLHelperScaling::ScaleOp(0, true, 120));
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 60));
y_ops_.push_back(GLHelperScaling::ScaleOp(0, false, 120));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 60));
CheckPipeline2(100, 100, 60, 60,
"100x100 -> 60x60 bilinear2x2\n");
// X scaled to 40%, Y scaled 40%, two bilinear3 passes.
x_ops_.push_back(GLHelperScaling::ScaleOp(3, true, 40));
y_ops_.push_back(GLHelperScaling::ScaleOp(3, false, 40));
CheckPipeline2(100, 100, 40, 40,
"100x100 -> 100x40 bilinear3 Y\n"
"100x40 -> 40x40 bilinear3 X\n");
// X scaled to 60%, Y scaled 40%
x_ops_.push_back(GLHelperScaling::ScaleOp(0, true, 120));
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 60));
y_ops_.push_back(GLHelperScaling::ScaleOp(3, false, 40));
CheckPipeline2(100, 100, 60, 40,
"100x100 -> 100x40 bilinear3 Y\n"
"100x40 -> 60x40 bilinear2 X\n");
// X scaled to 40%, Y scaled 60%
x_ops_.push_back(GLHelperScaling::ScaleOp(3, true, 40));
y_ops_.push_back(GLHelperScaling::ScaleOp(0, false, 120));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 60));
CheckPipeline2(100, 100, 40, 60,
"100x100 -> 100x60 bilinear2 Y\n"
"100x60 -> 40x60 bilinear3 X\n");
// X scaled to 30%, Y scaled 30%
x_ops_.push_back(GLHelperScaling::ScaleOp(0, true, 120));
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 60));
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 30));
y_ops_.push_back(GLHelperScaling::ScaleOp(0, false, 120));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 60));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 30));
CheckPipeline2(100, 100, 30, 30,
"100x100 -> 100x30 bilinear4 Y\n"
"100x30 -> 30x30 bilinear4 X\n");
// X scaled to 50%, Y scaled 30%
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 50));
y_ops_.push_back(GLHelperScaling::ScaleOp(0, false, 120));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 60));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 30));
CheckPipeline2(100, 100, 50, 30,
"100x100 -> 50x30 bilinear4 Y\n");
// X scaled to 150%, Y scaled 30%
// Note that we avoid combinding X and Y passes
// as that would probably be LESS efficient here.
x_ops_.push_back(GLHelperScaling::ScaleOp(0, true, 150));
y_ops_.push_back(GLHelperScaling::ScaleOp(0, false, 120));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 60));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 30));
CheckPipeline2(100, 100, 150, 30,
"100x100 -> 100x30 bilinear4 Y\n"
"100x30 -> 150x30 bilinear\n");
// X scaled to 1%, Y scaled 1%
x_ops_.push_back(GLHelperScaling::ScaleOp(0, true, 128));
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 64));
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 32));
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 16));
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 8));
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 4));
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 2));
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 1));
y_ops_.push_back(GLHelperScaling::ScaleOp(0, false, 128));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 64));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 32));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 16));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 8));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 4));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 2));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 1));
CheckPipeline2(100, 100, 30, 30,
"100x100 -> 100x32 bilinear4 Y\n"
"100x32 -> 100x4 bilinear4 Y\n"
"100x4 -> 64x1 bilinear2x2\n"
"64x1 -> 8x1 bilinear4 X\n"
"8x1 -> 1x1 bilinear4 X\n");
}
scoped_ptr<WebKit::WebGraphicsContext3D> context_;
scoped_ptr<content::GLHelper> helper_;
scoped_ptr<content::GLHelperScaling> helper_scaling_;
std::deque<GLHelperScaling::ScaleOp> x_ops_, y_ops_;
};
// Per pixel tests, all sizes are small so that we can print
// out the generated bitmaps.
TEST_F(GLHelperTest, ScaleTest) {
int sizes[] = {3, 6, 16};
for (size_t q = 0; q < arraysize(kQualities); q++) {
for (int x = 0; x < 3; x++) {
for (int y = 0; y < 3; y++) {
for (int dst_x = 0; dst_x < 3; dst_x++) {
for (int dst_y = 0; dst_y < 3; dst_y++) {
for (int pattern = 0; pattern < 3; pattern++) {
TestScale(sizes[x],
sizes[y],
sizes[dst_x],
sizes[dst_y],
pattern,
q);
if (HasFailure()) {
return;
}
}
}
}
}
}
}
}
// Validate that all scaling generates valid pipelines.
TEST_F(GLHelperTest, ValidateScalerPipelines) {
int sizes[] = {7, 99, 128, 256, 512, 719, 720, 721, 1920, 2011, 3217, 4096};
for (size_t q = 0; q < arraysize(kQualities); q++) {
for (size_t x = 0; x < arraysize(sizes); x++) {
for (size_t y = 0; y < arraysize(sizes); y++) {
for (size_t dst_x = 0; dst_x < arraysize(sizes); dst_x++) {
for (size_t dst_y = 0; dst_y < arraysize(sizes); dst_y++) {
TestScalerPipeline(q,
sizes[x], sizes[y],
sizes[dst_x], sizes[dst_y]);
if (HasFailure()) {
return;
}
}
}
}
}
}
}
// Make sure we don't create overly complicated pipelines
// for a few common use cases.
TEST_F(GLHelperTest, CheckSpecificPipelines) {
// Upscale should be single pass.
CheckPipeline(content::GLHelper::SCALER_QUALITY_GOOD,
1024, 700, 1280, 720,
"1024x700 -> 1280x720 bilinear\n");
// Slight downscale should use BILINEAR2X2.
CheckPipeline(content::GLHelper::SCALER_QUALITY_GOOD,
1280, 720, 1024, 700,
"1280x720 -> 1024x700 bilinear2x2\n");
// Most common tab capture pipeline on the Pixel.
// Should be using two BILINEAR3 passes.
CheckPipeline(content::GLHelper::SCALER_QUALITY_GOOD,
2560, 1476, 1249, 720,
"2560x1476 -> 2560x720 bilinear3 Y\n"
"2560x720 -> 1249x720 bilinear3 X\n");
}
TEST_F(GLHelperTest, ScalerOpTest) {
for (int allow3 = 0; allow3 <= 1; allow3++) {
for (int dst = 1; dst < 2049; dst += 1 + (dst >> 3)) {
for (int src = 1; src < 2049; src++) {
TestAddOps(src, dst, allow3 == 1, (src & 1) == 1);
if (HasFailure()) {
LOG(ERROR) << "Failed for src=" << src
<< " dst=" << dst
<< " allow3=" << allow3;
return;
}
}
}
}
}
TEST_F(GLHelperTest, CheckOptimizations) {
// Test in baseclass since it is friends with GLHelperScaling
CheckOptimizationsTest();
}
} // namespace
// These tests needs to run against a proper GL environment, so we
// need to set it up before we can run the tests.
int main(int argc, char** argv) {
CommandLine::Init(argc, argv);
base::TestSuite* suite = new content::ContentTestSuite(argc, argv);
#if defined(OS_MACOSX)
base::mac::ScopedNSAutoreleasePool pool;
#endif
#if defined(TOOLKIT_GTK)
gfx::GtkInitFromCommandLine(*CommandLine::ForCurrentProcess());
#endif
gfx::GLSurface::InitializeOneOff();
return content::UnitTestTestSuite(suite).Run();
}
|