summaryrefslogtreecommitdiffstats
path: root/content/gpu/gpu_watchdog_thread.cc
blob: 5d6c0882de2bda28a7a73328aa988a3c41d60b39 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#if defined(OS_WIN)
#include <windows.h>
#endif

#include "content/gpu/gpu_watchdog_thread.h"

#include "base/bind.h"
#include "base/bind_helpers.h"
#include "base/compiler_specific.h"
#include "base/process_util.h"
#include "base/process.h"
#include "build/build_config.h"
#include "content/public/common/result_codes.h"

namespace {
const int64 kCheckPeriodMs = 2000;
}  // namespace

GpuWatchdogThread::GpuWatchdogThread(int timeout)
    : base::Thread("Watchdog"),
      watched_message_loop_(MessageLoop::current()),
      timeout_(base::TimeDelta::FromMilliseconds(timeout)),
      armed_(false),
#if defined(OS_WIN)
      watched_thread_handle_(0),
      arm_cpu_time_(),
#endif
      ALLOW_THIS_IN_INITIALIZER_LIST(task_observer_(this)),
      ALLOW_THIS_IN_INITIALIZER_LIST(weak_factory_(this)) {
  DCHECK(timeout >= 0);

#if defined(OS_WIN)
  // GetCurrentThread returns a pseudo-handle that cannot be used by one thread
  // to identify another. DuplicateHandle creates a "real" handle that can be
  // used for this purpose.
  BOOL result = DuplicateHandle(GetCurrentProcess(),
                                GetCurrentThread(),
                                GetCurrentProcess(),
                                &watched_thread_handle_,
                                THREAD_QUERY_INFORMATION,
                                FALSE,
                                0);
  DCHECK(result);
#endif

  watched_message_loop_->AddTaskObserver(&task_observer_);
}

void GpuWatchdogThread::PostAcknowledge() {
  // Called on the monitored thread. Responds with OnAcknowledge. Cannot use
  // the method factory. Rely on reference counting instead.
  message_loop()->PostTask(
      FROM_HERE,
      base::Bind(&GpuWatchdogThread::OnAcknowledge, this));
}

void GpuWatchdogThread::CheckArmed() {
  // Acknowledge the watchdog if it has armed itself. The watchdog will not
  // change its armed state until it is acknowledged.
  if (armed()) {
    PostAcknowledge();
  }
}

void GpuWatchdogThread::Init() {
  // Schedule the first check.
  OnCheck();
}

void GpuWatchdogThread::CleanUp() {
  weak_factory_.InvalidateWeakPtrs();
}

GpuWatchdogThread::GpuWatchdogTaskObserver::GpuWatchdogTaskObserver(
    GpuWatchdogThread* watchdog)
    : watchdog_(watchdog) {
}

GpuWatchdogThread::GpuWatchdogTaskObserver::~GpuWatchdogTaskObserver() {
}

void GpuWatchdogThread::GpuWatchdogTaskObserver::WillProcessTask(
    base::TimeTicks time_posted) {
  watchdog_->CheckArmed();
}

void GpuWatchdogThread::GpuWatchdogTaskObserver::DidProcessTask(
    base::TimeTicks time_posted) {
  watchdog_->CheckArmed();
}

GpuWatchdogThread::~GpuWatchdogThread() {
  // Verify that the thread was explicitly stopped. If the thread is stopped
  // implicitly by the destructor, CleanUp() will not be called.
  DCHECK(!weak_factory_.HasWeakPtrs());

#if defined(OS_WIN)
  CloseHandle(watched_thread_handle_);
#endif

  watched_message_loop_->RemoveTaskObserver(&task_observer_);
}

void GpuWatchdogThread::OnAcknowledge() {
  // The check has already been acknowledged and another has already been
  // scheduled by a previous call to OnAcknowledge. It is normal for a
  // watched thread to see armed_ being true multiple times before
  // the OnAcknowledge task is run on the watchdog thread.
  if (!armed_)
    return;

  // Revoke any pending hang termination.
  weak_factory_.InvalidateWeakPtrs();
  armed_ = false;

  // The monitored thread has responded. Post a task to check it again.
  message_loop()->PostDelayedTask(
      FROM_HERE,
      base::Bind(&GpuWatchdogThread::OnCheck, weak_factory_.GetWeakPtr()),
      base::TimeDelta::FromMilliseconds(kCheckPeriodMs));
}

void GpuWatchdogThread::OnCheck() {
  if (armed_)
    return;

  // Must set armed before posting the task. This task might be the only task
  // that will activate the TaskObserver on the watched thread and it must not
  // miss the false -> true transition.
  armed_ = true;

#if defined(OS_WIN)
  arm_cpu_time_ = GetWatchedThreadTime();
#endif

  arm_absolute_time_ = base::Time::Now();

  // Post a task to the monitored thread that does nothing but wake up the
  // TaskObserver. Any other tasks that are pending on the watched thread will
  // also wake up the observer. This simply ensures there is at least one.
  watched_message_loop_->PostTask(
      FROM_HERE,
      base::Bind(&base::DoNothing));

  // Post a task to the watchdog thread to exit if the monitored thread does
  // not respond in time.
  message_loop()->PostDelayedTask(
      FROM_HERE,
      base::Bind(
          &GpuWatchdogThread::DeliberatelyTerminateToRecoverFromHang,
          weak_factory_.GetWeakPtr()),
      timeout_);
}

// Use the --disable-gpu-watchdog command line switch to disable this.
void GpuWatchdogThread::DeliberatelyTerminateToRecoverFromHang() {
#if defined(OS_WIN)
  // Defer termination until a certain amount of CPU time has elapsed on the
  // watched thread.
  base::TimeDelta time_since_arm = GetWatchedThreadTime() - arm_cpu_time_;
  if (time_since_arm < timeout_) {
    message_loop()->PostDelayedTask(
        FROM_HERE,
        base::Bind(
            &GpuWatchdogThread::DeliberatelyTerminateToRecoverFromHang,
            weak_factory_.GetWeakPtr()),
        timeout_ - time_since_arm);
    return;
  }
#endif

  // If the watchdog woke up significantly behind schedule, disarm and reset
  // the watchdog check. This is to prevent the watchdog thread from terminating
  // when a machine wakes up from sleep or hibernation, which would otherwise
  // appear to be a hang.
  if (base::Time::Now() - arm_absolute_time_ > timeout_ * 2) {
    armed_ = false;
    OnCheck();
    return;
  }

  // For minimal developer annoyance, don't keep terminating. You need to skip
  // the call to base::Process::Terminate below in a debugger for this to be
  // useful.
  static bool terminated = false;
  if (terminated)
    return;

#if defined(OS_WIN)
  if (IsDebuggerPresent())
    return;
#endif

  LOG(ERROR) << "The GPU process hung. Terminating after "
             << timeout_.InMilliseconds() << " ms.";

  base::Process current_process(base::GetCurrentProcessHandle());
  current_process.Terminate(content::RESULT_CODE_HUNG);

  terminated = true;
}

#if defined(OS_WIN)
base::TimeDelta GpuWatchdogThread::GetWatchedThreadTime() {
  FILETIME creation_time;
  FILETIME exit_time;
  FILETIME user_time;
  FILETIME kernel_time;
  BOOL result = GetThreadTimes(watched_thread_handle_,
                               &creation_time,
                               &exit_time,
                               &kernel_time,
                               &user_time);
  DCHECK(result);

  ULARGE_INTEGER user_time64;
  user_time64.HighPart = user_time.dwHighDateTime;
  user_time64.LowPart = user_time.dwLowDateTime;

  ULARGE_INTEGER kernel_time64;
  kernel_time64.HighPart = kernel_time.dwHighDateTime;
  kernel_time64.LowPart = kernel_time.dwLowDateTime;

  // Time is reported in units of 100 nanoseconds. Kernel and user time are
  // summed to deal with to kinds of hangs. One is where the GPU process is
  // stuck in user level, never calling into the kernel and kernel time is
  // not increasing. The other is where either the kernel hangs and never
  // returns to user level or where user level code
  // calls into kernel level repeatedly, giving up its quanta before it is
  // tracked, for example a loop that repeatedly Sleeps.
  return base::TimeDelta::FromMilliseconds(static_cast<int64>(
      (user_time64.QuadPart + kernel_time64.QuadPart) / 10000));
}
#endif