1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
|
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "content/renderer/audio_input_device.h"
#include "base/memory/singleton.h"
#include "base/message_loop.h"
#include "content/common/audio_messages.h"
#include "content/common/child_process.h"
#include "content/common/view_messages.h"
#include "content/renderer/render_thread.h"
#include "media/audio/audio_util.h"
scoped_refptr<AudioInputMessageFilter> AudioInputDevice::filter_;
namespace {
// AudioMessageFilterCreator is intended to be used as a singleton so we can
// get access to a shared AudioInputMessageFilter.
// Example usage:
// AudioInputMessageFilter* filter =
// AudioInputMessageFilterCreator::SharedFilter();
class AudioInputMessageFilterCreator {
public:
AudioInputMessageFilterCreator() {
int routing_id;
RenderThread::current()->Send(
new ViewHostMsg_GenerateRoutingID(&routing_id));
filter_ = new AudioInputMessageFilter(routing_id);
RenderThread::current()->AddFilter(filter_);
}
static AudioInputMessageFilter* SharedFilter() {
return GetInstance()->filter_.get();
}
static AudioInputMessageFilterCreator* GetInstance() {
return Singleton<AudioInputMessageFilterCreator>::get();
}
private:
scoped_refptr<AudioInputMessageFilter> filter_;
};
} // namespace
AudioInputDevice::AudioInputDevice(size_t buffer_size,
int channels,
double sample_rate,
CaptureCallback* callback)
: buffer_size_(buffer_size),
channels_(channels),
bits_per_sample_(16),
sample_rate_(sample_rate),
callback_(callback),
audio_delay_milliseconds_(0),
volume_(1.0),
stream_id_(0) {
audio_data_.reserve(channels);
for (int i = 0; i < channels; ++i) {
float* channel_data = new float[buffer_size];
audio_data_.push_back(channel_data);
}
// Lazily create the message filter and share across AudioInputDevice
// instances.
filter_ = AudioInputMessageFilterCreator::SharedFilter();
}
AudioInputDevice::~AudioInputDevice() {
// Make sure we have been shut down.
DCHECK_EQ(0, stream_id_);
Stop();
for (int i = 0; i < channels_; ++i)
delete [] audio_data_[i];
}
bool AudioInputDevice::Start() {
// Make sure we don't call Start() more than once.
DCHECK_EQ(0, stream_id_);
if (stream_id_)
return false;
AudioParameters params;
// TODO(henrika): add support for low-latency mode?
params.format = AudioParameters::AUDIO_PCM_LINEAR;
params.channels = channels_;
params.sample_rate = static_cast<int>(sample_rate_);
params.bits_per_sample = bits_per_sample_;
params.samples_per_packet = buffer_size_;
// Ensure that the initialization task is posted on the I/O thread by
// accessing the I/O message loop directly. This approach avoids a race
// condition which could exist if the message loop of the filter was
// used instead.
DCHECK(ChildProcess::current()) << "Must be in the renderer";
MessageLoop* message_loop = ChildProcess::current()->io_message_loop();
if (!message_loop)
return false;
message_loop->PostTask(FROM_HERE,
NewRunnableMethod(this, &AudioInputDevice::InitializeOnIOThread, params));
return true;
}
bool AudioInputDevice::Stop() {
if (!stream_id_)
return false;
filter_->message_loop()->PostTask(FROM_HERE,
NewRunnableMethod(this, &AudioInputDevice::ShutDownOnIOThread));
if (audio_thread_.get()) {
socket_->Close();
audio_thread_->Join();
}
return true;
}
bool AudioInputDevice::SetVolume(double volume) {
NOTIMPLEMENTED();
return false;
}
bool AudioInputDevice::GetVolume(double* volume) {
NOTIMPLEMENTED();
return false;
}
void AudioInputDevice::InitializeOnIOThread(const AudioParameters& params) {
stream_id_ = filter_->AddDelegate(this);
filter_->Send(
new AudioInputHostMsg_CreateStream(0, stream_id_, params, true));
}
void AudioInputDevice::StartOnIOThread() {
if (stream_id_)
filter_->Send(new AudioInputHostMsg_RecordStream(0, stream_id_));
}
void AudioInputDevice::ShutDownOnIOThread() {
// Make sure we don't call shutdown more than once.
if (!stream_id_)
return;
filter_->Send(new AudioInputHostMsg_CloseStream(0, stream_id_));
filter_->RemoveDelegate(stream_id_);
stream_id_ = 0;
}
void AudioInputDevice::SetVolumeOnIOThread(double volume) {
if (stream_id_)
filter_->Send(new AudioInputHostMsg_SetVolume(0, stream_id_, volume));
}
void AudioInputDevice::OnLowLatencyCreated(
base::SharedMemoryHandle handle,
base::SyncSocket::Handle socket_handle,
uint32 length) {
#if defined(OS_WIN)
DCHECK(handle);
DCHECK(socket_handle);
#else
DCHECK_GE(handle.fd, 0);
DCHECK_GE(socket_handle, 0);
#endif
DCHECK(length);
// TODO(henrika) : check that length is big enough for buffer_size_
shared_memory_.reset(new base::SharedMemory(handle, false));
shared_memory_->Map(length);
socket_.reset(new base::SyncSocket(socket_handle));
// TODO(henrika): we could optionally set the thread to high-priority
audio_thread_.reset(
new base::DelegateSimpleThread(this, "renderer_audio_input_thread"));
audio_thread_->Start();
if (filter_) {
filter_->message_loop()->PostTask(FROM_HERE,
NewRunnableMethod(this, &AudioInputDevice::StartOnIOThread));
}
}
void AudioInputDevice::OnVolume(double volume) {
NOTIMPLEMENTED();
}
// Our audio thread runs here. We receive captured audio samples on
// this thread.
void AudioInputDevice::Run() {
int pending_data;
const int samples_per_ms = static_cast<int>(sample_rate_) / 1000;
const int bytes_per_ms = channels_ * (bits_per_sample_ / 8) * samples_per_ms;
while (sizeof(pending_data) == socket_->Receive(&pending_data,
sizeof(pending_data)) &&
pending_data >= 0) {
// TODO(henrika): investigate the provided |pending_data| value
// and ensure that it is actually an accurate delay estimation.
// Convert the number of pending bytes in the capture buffer
// into milliseconds.
audio_delay_milliseconds_ = pending_data / bytes_per_ms;
FireCaptureCallback();
}
}
void AudioInputDevice::FireCaptureCallback() {
if (!callback_)
return;
const size_t number_of_frames = buffer_size_;
// Read 16-bit samples from shared memory (browser writes to it).
int16* input_audio = static_cast<int16*>(shared_memory_data());
const int bytes_per_sample = sizeof(input_audio[0]);
// Deinterleave each channel and convert to 32-bit floating-point
// with nominal range -1.0 -> +1.0.
for (int channel_index = 0; channel_index < channels_; ++channel_index) {
media::DeinterleaveAudioChannel(input_audio,
audio_data_[channel_index],
channels_,
channel_index,
bytes_per_sample,
number_of_frames);
}
// Deliver captured data to the client in floating point format
// and update the audio-delay measurement.
callback_->Capture(audio_data_,
number_of_frames,
audio_delay_milliseconds_);
}
|