summaryrefslogtreecommitdiffstats
path: root/courgette/disassembler_win32_x64.cc
blob: 667b4e14afa99507d92dfc860fc5f35998ddc38a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "courgette/disassembler_win32_x64.h"

#include <algorithm>
#include <string>
#include <vector>

#include "base/basictypes.h"
#include "base/logging.h"
#include "base/numerics/safe_conversions.h"

#include "courgette/assembly_program.h"
#include "courgette/courgette.h"
#include "courgette/encoded_program.h"

namespace courgette {

DisassemblerWin32X64::DisassemblerWin32X64(const void* start, size_t length)
  : Disassembler(start, length),
    incomplete_disassembly_(false),
    is_PE32_plus_(false),
    optional_header_(NULL),
    size_of_optional_header_(0),
    offset_of_data_directories_(0),
    machine_type_(0),
    number_of_sections_(0),
    sections_(NULL),
    has_text_section_(false),
    size_of_code_(0),
    size_of_initialized_data_(0),
    size_of_uninitialized_data_(0),
    base_of_code_(0),
    base_of_data_(0),
    image_base_(0),
    size_of_image_(0),
    number_of_data_directories_(0) {
}

// ParseHeader attempts to match up the buffer with the Windows data
// structures that exist within a Windows 'Portable Executable' format file.
// Returns 'true' if the buffer matches, and 'false' if the data looks
// suspicious.  Rather than try to 'map' the buffer to the numerous windows
// structures, we extract the information we need into the courgette::PEInfo
// structure.
//
bool DisassemblerWin32X64::ParseHeader() {
  if (length() < kOffsetOfFileAddressOfNewExeHeader + 4 /*size*/)
    return Bad("Too small");

  // Have 'MZ' magic for a DOS header?
  if (start()[0] != 'M' || start()[1] != 'Z')
    return Bad("Not MZ");

  // offset from DOS header to PE header is stored in DOS header.
  uint32 offset = ReadU32(start(),
                          kOffsetOfFileAddressOfNewExeHeader);

  if (offset >= length())
    return Bad("Bad offset to PE header");

  const uint8* const pe_header = OffsetToPointer(offset);
  const size_t kMinPEHeaderSize = 4 /*signature*/ + kSizeOfCoffHeader;
  if (pe_header <= start() ||
      pe_header >= end() - kMinPEHeaderSize)
    return Bad("Bad offset to PE header");

  if (offset % 8 != 0)
    return Bad("Misaligned PE header");

  // The 'PE' header is an IMAGE_NT_HEADERS structure as defined in WINNT.H.
  // See http://msdn.microsoft.com/en-us/library/ms680336(VS.85).aspx
  //
  // The first field of the IMAGE_NT_HEADERS is the signature.
  if (!(pe_header[0] == 'P' &&
        pe_header[1] == 'E' &&
        pe_header[2] == 0 &&
        pe_header[3] == 0))
    return Bad("no PE signature");

  // The second field of the IMAGE_NT_HEADERS is the COFF header.
  // The COFF header is also called an IMAGE_FILE_HEADER
  //   http://msdn.microsoft.com/en-us/library/ms680313(VS.85).aspx
  const uint8* const coff_header = pe_header + 4;
  machine_type_       = ReadU16(coff_header, 0);
  number_of_sections_ = ReadU16(coff_header, 2);
  size_of_optional_header_ = ReadU16(coff_header, 16);

  // The rest of the IMAGE_NT_HEADERS is the IMAGE_OPTIONAL_HEADER(32|64)
  const uint8* const optional_header = coff_header + kSizeOfCoffHeader;
  optional_header_ = optional_header;

  if (optional_header + size_of_optional_header_ >= end())
    return Bad("optional header past end of file");

  // Check we can read the magic.
  if (size_of_optional_header_ < 2)
    return Bad("optional header no magic");

  uint16 magic = ReadU16(optional_header, 0);

  if (magic == kImageNtOptionalHdr32Magic) {
    is_PE32_plus_ = false;
    offset_of_data_directories_ =
      kOffsetOfDataDirectoryFromImageOptionalHeader32;
  } else if (magic == kImageNtOptionalHdr64Magic) {
    is_PE32_plus_ = true;
    offset_of_data_directories_ =
      kOffsetOfDataDirectoryFromImageOptionalHeader64;
  } else {
    return Bad("unrecognized magic");
  }

  // Check that we can read the rest of the the fixed fields.  Data directories
  // directly follow the fixed fields of the IMAGE_OPTIONAL_HEADER.
  if (size_of_optional_header_ < offset_of_data_directories_)
    return Bad("optional header too short");

  // The optional header is either an IMAGE_OPTIONAL_HEADER32 or
  // IMAGE_OPTIONAL_HEADER64
  // http://msdn.microsoft.com/en-us/library/ms680339(VS.85).aspx
  //
  // Copy the fields we care about.
  size_of_code_               = ReadU32(optional_header, 4);
  size_of_initialized_data_   = ReadU32(optional_header, 8);
  size_of_uninitialized_data_ = ReadU32(optional_header, 12);
  base_of_code_               = ReadU32(optional_header, 20);
  if (is_PE32_plus_) {
    base_of_data_ = 0;
    image_base_  = ReadU64(optional_header, 24);
  } else {
    base_of_data_ = ReadU32(optional_header, 24);
    image_base_   = ReadU32(optional_header, 28);
  }
  size_of_image_ = ReadU32(optional_header, 56);
  number_of_data_directories_ =
    ReadU32(optional_header, (is_PE32_plus_ ? 108 : 92));

  if (size_of_code_ >= length() ||
      size_of_initialized_data_ >= length() ||
      size_of_code_ + size_of_initialized_data_ >= length()) {
    // This validation fires on some perfectly fine executables.
    //  return Bad("code or initialized data too big");
  }

  // TODO(sra): we can probably get rid of most of the data directories.
  bool b = true;
  // 'b &= ...' could be short circuit 'b = b && ...' but it is not necessary
  // for correctness and it compiles smaller this way.
  b &= ReadDataDirectory(0, &export_table_);
  b &= ReadDataDirectory(1, &import_table_);
  b &= ReadDataDirectory(2, &resource_table_);
  b &= ReadDataDirectory(3, &exception_table_);
  b &= ReadDataDirectory(5, &base_relocation_table_);
  b &= ReadDataDirectory(11, &bound_import_table_);
  b &= ReadDataDirectory(12, &import_address_table_);
  b &= ReadDataDirectory(13, &delay_import_descriptor_);
  b &= ReadDataDirectory(14, &clr_runtime_header_);
  if (!b) {
    return Bad("malformed data directory");
  }

  // Sections follow the optional header.
  sections_ =
      reinterpret_cast<const Section*>(optional_header +
                                       size_of_optional_header_);
  size_t detected_length = 0;

  for (int i = 0;  i < number_of_sections_;  ++i) {
    const Section* section = &sections_[i];

    // TODO(sra): consider using the 'characteristics' field of the section
    // header to see if the section contains instructions.
    if (memcmp(section->name, ".text", 6) == 0)
      has_text_section_ = true;

    uint32 section_end =
        section->file_offset_of_raw_data + section->size_of_raw_data;
    if (section_end > detected_length)
      detected_length = section_end;
  }

  // Pretend our in-memory copy is only as long as our detected length.
  ReduceLength(detected_length);

  if (is_32bit()) {
    return Bad("32 bit executables are not supported by this disassembler");
  }

  if (!has_text_section()) {
    return Bad("Resource-only executables are not yet supported");
  }

  return Good();
}

bool DisassemblerWin32X64::Disassemble(AssemblyProgram* target) {
  if (!ok())
    return false;

  target->set_image_base(image_base());

  if (!ParseAbs32Relocs())
    return false;

  ParseRel32RelocsFromSections();

  if (!ParseFile(target))
    return false;

  target->DefaultAssignIndexes();

  return true;
}

////////////////////////////////////////////////////////////////////////////////

bool DisassemblerWin32X64::ParseRelocs(std::vector<RVA> *relocs) {
  relocs->clear();

  size_t relocs_size = base_relocation_table_.size_;
  if (relocs_size == 0)
    return true;

  // The format of the base relocation table is a sequence of variable sized
  // IMAGE_BASE_RELOCATION blocks.  Search for
  //   "The format of the base relocation data is somewhat quirky"
  // at http://msdn.microsoft.com/en-us/library/ms809762.aspx

  const uint8* relocs_start = RVAToPointer(base_relocation_table_.address_);
  const uint8* relocs_end = relocs_start + relocs_size;

  // Make sure entire base relocation table is within the buffer.
  if (relocs_start < start() ||
      relocs_start >= end() ||
      relocs_end <= start() ||
      relocs_end > end()) {
    return Bad(".relocs outside image");
  }

  const uint8* block = relocs_start;

  // Walk the variable sized blocks.
  while (block + 8 < relocs_end) {
    RVA page_rva = ReadU32(block, 0);
    uint32 size = ReadU32(block, 4);
    if (size < 8 ||        // Size includes header ...
        size % 4  !=  0)   // ... and is word aligned.
      return Bad("unreasonable relocs block");

    const uint8* end_entries = block + size;

    if (end_entries <= block ||
        end_entries <= start() ||
        end_entries > end())
      return Bad(".relocs block outside image");

    // Walk through the two-byte entries.
    for (const uint8* p = block + 8;  p < end_entries;  p += 2) {
      uint16 entry = ReadU16(p, 0);
      int type = entry >> 12;
      int offset = entry & 0xFFF;

      RVA rva = page_rva + offset;
      if (type == 10) {         // IMAGE_REL_BASED_DIR64
        relocs->push_back(rva);
      } else if (type == 0) {  // IMAGE_REL_BASED_ABSOLUTE
        // Ignore, used as padding.
      } else {
        // Does not occur in Windows x64 executables.
        return Bad("unknown type of reloc");
      }
    }

    block += size;
  }

  std::sort(relocs->begin(), relocs->end());

  return true;
}

const Section* DisassemblerWin32X64::RVAToSection(RVA rva) const {
  for (int i = 0; i < number_of_sections_; i++) {
    const Section* section = &sections_[i];
    uint32 offset = rva - section->virtual_address;
    if (offset < section->virtual_size) {
      return section;
    }
  }
  return NULL;
}

int DisassemblerWin32X64::RVAToFileOffset(RVA rva) const {
  const Section* section = RVAToSection(rva);
  if (section) {
    uint32 offset = rva - section->virtual_address;
    if (offset < section->size_of_raw_data) {
      return section->file_offset_of_raw_data + offset;
    } else {
      return kNoOffset;  // In section but not in file (e.g. uninit data).
    }
  }

  // Small RVA values point into the file header in the loaded image.
  // RVA 0 is the module load address which Windows uses as the module handle.
  // RVA 2 sometimes occurs, I'm not sure what it is, but it would map into the
  // DOS header.
  if (rva == 0 || rva == 2)
    return rva;

  NOTREACHED();
  return kNoOffset;
}

const uint8* DisassemblerWin32X64::RVAToPointer(RVA rva) const {
  int file_offset = RVAToFileOffset(rva);
  if (file_offset == kNoOffset)
    return NULL;
  else
    return OffsetToPointer(file_offset);
}

std::string DisassemblerWin32X64::SectionName(const Section* section) {
  if (section == NULL)
    return "<none>";
  char name[9];
  memcpy(name, section->name, 8);
  name[8] = '\0';  // Ensure termination.
  return name;
}

CheckBool DisassemblerWin32X64::ParseFile(AssemblyProgram* program) {
  // Walk all the bytes in the file, whether or not in a section.
  uint32 file_offset = 0;
  while (file_offset < length()) {
    const Section* section = FindNextSection(file_offset);
    if (section == NULL) {
      // No more sections.  There should not be extra stuff following last
      // section.
      //   ParseNonSectionFileRegion(file_offset, pe_info().length(), program);
      break;
    }
    if (file_offset < section->file_offset_of_raw_data) {
      uint32 section_start_offset = section->file_offset_of_raw_data;
      if(!ParseNonSectionFileRegion(file_offset, section_start_offset,
                                    program))
        return false;

      file_offset = section_start_offset;
    }
    uint32 end = file_offset + section->size_of_raw_data;
    if (!ParseFileRegion(section, file_offset, end, program))
      return false;
    file_offset = end;
  }

#if COURGETTE_HISTOGRAM_TARGETS
  HistogramTargets("abs32 relocs", abs32_target_rvas_);
  HistogramTargets("rel32 relocs", rel32_target_rvas_);
#endif

  return true;
}

bool DisassemblerWin32X64::ParseAbs32Relocs() {
  abs32_locations_.clear();
  if (!ParseRelocs(&abs32_locations_))
    return false;

  std::sort(abs32_locations_.begin(), abs32_locations_.end());

#if COURGETTE_HISTOGRAM_TARGETS
  for (size_t i = 0;  i < abs32_locations_.size(); ++i) {
    RVA rva = abs32_locations_[i];
    // The 4 bytes at the relocation are a reference to some address.
    uint32 target_address = Read32LittleEndian(RVAToPointer(rva));
    ++abs32_target_rvas_[target_address - image_base()];
  }
#endif
  return true;
}

void DisassemblerWin32X64::ParseRel32RelocsFromSections() {
  uint32 file_offset = 0;
  while (file_offset < length()) {
    const Section* section = FindNextSection(file_offset);
    if (section == NULL)
      break;
    if (file_offset < section->file_offset_of_raw_data)
      file_offset = section->file_offset_of_raw_data;
    ParseRel32RelocsFromSection(section);
    file_offset += section->size_of_raw_data;
  }
  std::sort(rel32_locations_.begin(), rel32_locations_.end());

#if COURGETTE_HISTOGRAM_TARGETS
  VLOG(1) << "abs32_locations_ " << abs32_locations_.size()
          << "\nrel32_locations_ " << rel32_locations_.size()
          << "\nabs32_target_rvas_ " << abs32_target_rvas_.size()
          << "\nrel32_target_rvas_ " << rel32_target_rvas_.size();

  int common = 0;
  std::map<RVA, int>::iterator abs32_iter = abs32_target_rvas_.begin();
  std::map<RVA, int>::iterator rel32_iter = rel32_target_rvas_.begin();
  while (abs32_iter != abs32_target_rvas_.end() &&
         rel32_iter != rel32_target_rvas_.end()) {
    if (abs32_iter->first < rel32_iter->first)
      ++abs32_iter;
    else if (rel32_iter->first < abs32_iter->first)
      ++rel32_iter;
    else {
      ++common;
      ++abs32_iter;
      ++rel32_iter;
    }
  }
  VLOG(1) << "common " << common;
#endif
}

void DisassemblerWin32X64::ParseRel32RelocsFromSection(const Section* section) {
  // TODO(sra): use characteristic.
  bool isCode = strcmp(section->name, ".text") == 0;
  if (!isCode)
    return;

  uint32 start_file_offset = section->file_offset_of_raw_data;
  uint32 end_file_offset = start_file_offset + section->size_of_raw_data;
  RVA relocs_start_rva = base_relocation_table().address_;

  const uint8* start_pointer = OffsetToPointer(start_file_offset);
  const uint8* end_pointer = OffsetToPointer(end_file_offset);

  RVA start_rva = FileOffsetToRVA(start_file_offset);
  RVA end_rva = start_rva + section->virtual_size;

  // Quick way to convert from Pointer to RVA within a single Section is to
  // subtract 'pointer_to_rva'.
  const uint8* const adjust_pointer_to_rva = start_pointer - start_rva;

  std::vector<RVA>::iterator abs32_pos = abs32_locations_.begin();

  // Find the rel32 relocations.
  const uint8* p = start_pointer;
  while (p < end_pointer) {
    RVA current_rva = static_cast<RVA>(p - adjust_pointer_to_rva);
    if (current_rva == relocs_start_rva) {
      uint32 relocs_size = base_relocation_table().size_;
      if (relocs_size) {
        p += relocs_size;
        continue;
      }
    }

    //while (abs32_pos != abs32_locations_.end() && *abs32_pos < current_rva)
    //  ++abs32_pos;

    // Heuristic discovery of rel32 locations in instruction stream: are the
    // next few bytes the start of an instruction containing a rel32
    // addressing mode?
    const uint8* rel32 = NULL;
    bool is_rip_relative = false;

    if (p + 5 <= end_pointer) {
      if (*p == 0xE8 || *p == 0xE9)  // jmp rel32 and call rel32
        rel32 = p + 1;
    }
    if (p + 6 <= end_pointer) {
      if (*p == 0x0F && (*(p + 1) & 0xF0) == 0x80) {  // Jcc long form
        if (p[1] != 0x8A && p[1] != 0x8B)  // JPE/JPO unlikely
          rel32 = p + 2;
      } else if (*p == 0xFF && (*(p + 1) == 0x15 || *(p + 1) == 0x25)) {
        // rip relative call/jmp
        rel32 = p + 2;
        is_rip_relative = true;
      }
    }
    if (p + 7 <= end_pointer) {
      if ((*p & 0xFB) == 0x48 && *(p + 1) == 0x8D &&
          (*(p + 2) & 0xC7) == 0x05) {
        // rip relative lea
        rel32 = p + 3;
        is_rip_relative = true;
      } else if ((*p & 0xFB) == 0x48 && *(p + 1) == 0x8B &&
                 (*(p + 2) & 0xC7) == 0x05) {
        // rip relative mov
        rel32 = p + 3;
        is_rip_relative = true;
      }
    }

    if (rel32) {
      RVA rel32_rva = static_cast<RVA>(rel32 - adjust_pointer_to_rva);

      // Is there an abs32 reloc overlapping the candidate?
      while (abs32_pos != abs32_locations_.end() && *abs32_pos < rel32_rva - 3)
        ++abs32_pos;
      // Now: (*abs32_pos > rel32_rva - 4) i.e. the lowest addressed 4-byte
      // region that could overlap rel32_rva.
      if (abs32_pos != abs32_locations_.end()) {
        if (*abs32_pos < rel32_rva + 4) {
          // Beginning of abs32 reloc is before end of rel32 reloc so they
          // overlap.  Skip four bytes past the abs32 reloc.
          p += (*abs32_pos + 4) - current_rva;
          continue;
        }
      }

      RVA target_rva = rel32_rva + 4 + Read32LittleEndian(rel32);
      // To be valid, rel32 target must be within image, and within this
      // section.
      if (IsValidRVA(target_rva) &&
          (is_rip_relative ||
           (start_rva <= target_rva && target_rva < end_rva))) {
        rel32_locations_.push_back(rel32_rva);
#if COURGETTE_HISTOGRAM_TARGETS
        ++rel32_target_rvas_[target_rva];
#endif
        p = rel32 + 4;
        continue;
      }
    }
    p += 1;
  }
}

CheckBool DisassemblerWin32X64::ParseNonSectionFileRegion(
    uint32 start_file_offset,
    uint32 end_file_offset,
    AssemblyProgram* program) {
  if (incomplete_disassembly_)
    return true;

  if (end_file_offset > start_file_offset) {
    if (!program->EmitBytesInstruction(OffsetToPointer(start_file_offset),
                                       end_file_offset - start_file_offset)) {
      return false;
    }
  }

  return true;
}

CheckBool DisassemblerWin32X64::ParseFileRegion(
    const Section* section,
    uint32 start_file_offset, uint32 end_file_offset,
    AssemblyProgram* program) {
  RVA relocs_start_rva = base_relocation_table().address_;

  const uint8* start_pointer = OffsetToPointer(start_file_offset);
  const uint8* end_pointer = OffsetToPointer(end_file_offset);

  RVA start_rva = FileOffsetToRVA(start_file_offset);
  RVA end_rva = start_rva + section->virtual_size;

  // Quick way to convert from Pointer to RVA within a single Section is to
  // subtract 'pointer_to_rva'.
  const uint8* const adjust_pointer_to_rva = start_pointer - start_rva;

  std::vector<RVA>::iterator rel32_pos = rel32_locations_.begin();
  std::vector<RVA>::iterator abs32_pos = abs32_locations_.begin();

  if (!program->EmitOriginInstruction(start_rva))
    return false;

  const uint8* p = start_pointer;

  while (p < end_pointer) {
    RVA current_rva = static_cast<RVA>(p - adjust_pointer_to_rva);

    // The base relocation table is usually in the .relocs section, but it could
    // actually be anywhere.  Make sure we skip it because we will regenerate it
    // during assembly.
    if (current_rva == relocs_start_rva) {
      if (!program->EmitPeRelocsInstruction())
        return false;
      uint32 relocs_size = base_relocation_table().size_;
      if (relocs_size) {
        p += relocs_size;
        continue;
      }
    }

    while (abs32_pos != abs32_locations_.end() && *abs32_pos < current_rva)
      ++abs32_pos;

    if (abs32_pos != abs32_locations_.end() && *abs32_pos == current_rva) {
      uint64 target_address = Read64LittleEndian(p);
      RVA target_rva = base::checked_cast<RVA>(target_address - image_base());
      // TODO(sra): target could be Label+offset.  It is not clear how to guess
      // which it might be.  We assume offset==0.
      if (!program->EmitAbs64(program->FindOrMakeAbs32Label(target_rva)))
        return false;
      p += 8;
      continue;
    }

    while (rel32_pos != rel32_locations_.end() && *rel32_pos < current_rva)
      ++rel32_pos;

    if (rel32_pos != rel32_locations_.end() && *rel32_pos == current_rva) {
      RVA target_rva = current_rva + 4 + Read32LittleEndian(p);
      if (!program->EmitRel32(program->FindOrMakeRel32Label(target_rva)))
        return false;
      p += 4;
      continue;
    }

    if (incomplete_disassembly_) {
      if ((abs32_pos == abs32_locations_.end() || end_rva <= *abs32_pos) &&
          (rel32_pos == rel32_locations_.end() || end_rva <= *rel32_pos) &&
          (end_rva <= relocs_start_rva || current_rva >= relocs_start_rva)) {
        // No more relocs in this section, don't bother encoding bytes.
        break;
      }
    }

    if (!program->EmitByteInstruction(*p))
      return false;
    p += 1;
  }

  return true;
}

#if COURGETTE_HISTOGRAM_TARGETS
// Histogram is printed to std::cout.  It is purely for debugging the algorithm
// and is only enabled manually in 'exploration' builds.  I don't want to add
// command-line configuration for this feature because this code has to be
// small, which means compiled-out.
void DisassemblerWin32X64::HistogramTargets(const char* kind,
                                            const std::map<RVA, int>& map) {
  int total = 0;
  std::map<int, std::vector<RVA> > h;
  for (std::map<RVA, int>::const_iterator p = map.begin();
       p != map.end();
       ++p) {
    h[p->second].push_back(p->first);
    total += p->second;
  }

  std::cout << total << " " << kind << " to "
            << map.size() << " unique targets" << std::endl;

  std::cout << "indegree: #targets-with-indegree (example)" << std::endl;
  const int kFirstN = 15;
  bool someSkipped = false;
  int index = 0;
  for (std::map<int, std::vector<RVA> >::reverse_iterator p = h.rbegin();
       p != h.rend();
       ++p) {
    ++index;
    if (index <= kFirstN || p->first <= 3) {
      if (someSkipped) {
        std::cout << "..." << std::endl;
      }
      size_t count = p->second.size();
      std::cout << std::dec << p->first << ": " << count;
      if (count <= 2) {
        for (size_t i = 0;  i < count;  ++i)
          std::cout << "  " << DescribeRVA(p->second[i]);
      }
      std::cout << std::endl;
      someSkipped = false;
    } else {
      someSkipped = true;
    }
  }
}
#endif  // COURGETTE_HISTOGRAM_TARGETS


// DescribeRVA is for debugging only.  I would put it under #ifdef DEBUG except
// that during development I'm finding I need to call it when compiled in
// Release mode.  Hence:
// TODO(sra): make this compile only for debug mode.
std::string DisassemblerWin32X64::DescribeRVA(RVA rva) const {
  const Section* section = RVAToSection(rva);
  std::ostringstream s;
  s << std::hex << rva;
  if (section) {
    s << " (";
    s << SectionName(section) << "+"
      << std::hex << (rva - section->virtual_address)
      << ")";
  }
  return s.str();
}

const Section* DisassemblerWin32X64::FindNextSection(uint32 fileOffset) const {
  const Section* best = 0;
  for (int i = 0; i < number_of_sections_; i++) {
    const Section* section = &sections_[i];
    if (section->size_of_raw_data > 0) {  // i.e. has data in file.
      if (fileOffset <= section->file_offset_of_raw_data) {
        if (best == 0 ||
            section->file_offset_of_raw_data < best->file_offset_of_raw_data) {
          best = section;
        }
      }
    }
  }
  return best;
}

RVA DisassemblerWin32X64::FileOffsetToRVA(uint32 file_offset) const {
  for (int i = 0; i < number_of_sections_; i++) {
    const Section* section = &sections_[i];
    uint32 offset = file_offset - section->file_offset_of_raw_data;
    if (offset < section->size_of_raw_data) {
      return section->virtual_address + offset;
    }
  }
  return 0;
}

bool DisassemblerWin32X64::ReadDataDirectory(
    int index,
    ImageDataDirectory* directory) {

  if (index < number_of_data_directories_) {
    size_t offset = index * 8 + offset_of_data_directories_;
    if (offset >= size_of_optional_header_)
      return Bad("number of data directories inconsistent");
    const uint8* data_directory = optional_header_ + offset;
    if (data_directory < start() ||
        data_directory + 8 >= end())
      return Bad("data directory outside image");
    RVA rva = ReadU32(data_directory, 0);
    size_t size  = ReadU32(data_directory, 4);
    if (size > size_of_image_)
      return Bad("data directory size too big");

    // TODO(sra): validate RVA.
    directory->address_ = rva;
    directory->size_ = static_cast<uint32>(size);
    return true;
  } else {
    directory->address_ = 0;
    directory->size_ = 0;
    return true;
  }
}

}  // namespace courgette