1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
|
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "courgette/encoded_program.h"
#include "base/macros.h"
#include "base/memory/scoped_ptr.h"
#include "courgette/disassembler.h"
#include "courgette/streams.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace {
using courgette::EncodedProgram;
struct AddressSpec {
int32 index;
courgette::RVA rva;
};
// Creates a simple new program with given addresses. The orders of elements
// in |abs32_specs| and |rel32_specs| are important.
scoped_ptr<EncodedProgram> CreateTestProgram(AddressSpec* abs32_specs,
size_t num_abs32_specs,
AddressSpec* rel32_specs,
size_t num_rel32_specs) {
scoped_ptr<EncodedProgram> program(new EncodedProgram());
uint32 base = 0x00900000;
program->set_image_base(base);
for (size_t i = 0; i < num_abs32_specs; ++i) {
EXPECT_TRUE(program->DefineAbs32Label(abs32_specs[i].index,
abs32_specs[i].rva));
}
for (size_t i = 0; i < num_rel32_specs; ++i) {
EXPECT_TRUE(program->DefineRel32Label(rel32_specs[i].index,
rel32_specs[i].rva));
}
program->EndLabels();
EXPECT_TRUE(program->AddOrigin(0)); // Start at base.
for (size_t i = 0; i < num_abs32_specs; ++i)
EXPECT_TRUE(program->AddAbs32(abs32_specs[i].index));
for (size_t i = 0; i < num_rel32_specs; ++i)
EXPECT_TRUE(program->AddRel32(rel32_specs[i].index));
return program;
}
bool CompareSink(const uint8 expected[],
size_t num_expected,
courgette::SinkStream* ss) {
size_t n = ss->Length();
if (num_expected != n)
return false;
const uint8* buffer = ss->Buffer();
return memcmp(&expected[0], buffer, n) == 0;
}
} // namespace
// Create a simple program with a few addresses and references and
// check that the bits produced are as expected.
TEST(EncodedProgramTest, Test) {
// ABS32 index 7 == base + 4.
AddressSpec abs32_specs[] = {{7, 4}};
// REL32 index 5 == base + 0.
AddressSpec rel32_specs[] = {{5, 0}};
scoped_ptr<EncodedProgram> program(
CreateTestProgram(abs32_specs, arraysize(abs32_specs),
rel32_specs, arraysize(rel32_specs)));
// Serialize and deserialize.
courgette::SinkStreamSet sinks;
EXPECT_TRUE(program->WriteTo(&sinks));
program.reset();
courgette::SinkStream sink;
bool can_collect = sinks.CopyTo(&sink);
EXPECT_TRUE(can_collect);
const void* buffer = sink.Buffer();
size_t length = sink.Length();
courgette::SourceStreamSet sources;
bool can_get_source_streams = sources.Init(buffer, length);
EXPECT_TRUE(can_get_source_streams);
scoped_ptr<EncodedProgram> encoded2(new EncodedProgram());
bool can_read = encoded2->ReadFrom(&sources);
EXPECT_TRUE(can_read);
// Finally, try to assemble.
courgette::SinkStream assembled;
bool can_assemble = encoded2->AssembleTo(&assembled);
EXPECT_TRUE(can_assemble);
encoded2.reset();
const uint8 golden[] = {
0x04, 0x00, 0x90, 0x00, // ABS32 to base + 4
0xF8, 0xFF, 0xFF, 0xFF // REL32 from next line to base + 2
};
EXPECT_TRUE(CompareSink(golden, arraysize(golden), &assembled));
}
// A larger test with multiple addresses. We encode the program and check the
// contents of the address streams.
TEST(EncodedProgramTest, TestWriteAddress) {
// Absolute addresses by index: [_, _, _, 2, _, 23, _, 11].
AddressSpec abs32_specs[] = {{7, 11}, {3, 2}, {5, 23}};
// Relative addresses by index: [16, 7, _, 32].
AddressSpec rel32_specs[] = {{0, 16}, {3, 32}, {1, 7}};
scoped_ptr<EncodedProgram> program(
CreateTestProgram(abs32_specs, arraysize(abs32_specs),
rel32_specs, arraysize(rel32_specs)));
courgette::SinkStreamSet sinks;
EXPECT_TRUE(program->WriteTo(&sinks));
program.reset();
// Check addresses in sinks.
const uint8 golden_abs32_indexes[] = {
0x03, 0x07, 0x03, 0x05 // 3 indexes: [7, 3, 5].
};
EXPECT_TRUE(CompareSink(golden_abs32_indexes,
arraysize(golden_abs32_indexes),
sinks.stream(courgette::kStreamAbs32Indexes)));
const uint8 golden_rel32_indexes[] = {
0x03, 0x00, 0x03, 0x01 // 3 indexes: [0, 3, 1].
};
EXPECT_TRUE(CompareSink(golden_rel32_indexes,
arraysize(golden_rel32_indexes),
sinks.stream(courgette::kStreamRel32Indexes)));
// Addresses: [_, _, _, 2, _, 23, _, 11].
// Padded: [0, 0, 0, 2, 2, 23, 23, 11].
// Delta: [0, 0, 0, 2, 0, 21, 0, -12].
// Hex: [0, 0, 0, 0x02, 0, 0x15, 0, 0xFFFFFFF4].
// Complement neg: [0, 0, 0, 0x02, 0, 0x15, 0, (0x0B)].
// Varint32 Signed: [0, 0, 0, 0x04, 0, 0x2A, 0, 0x17].
const uint8 golden_abs32_addresses[] = {
0x08, // 8 address deltas.
0x00, 0x00, 0x00, 0x04, 0x00, 0x2A, 0x00, 0x17,
};
EXPECT_TRUE(CompareSink(golden_abs32_addresses,
arraysize(golden_abs32_addresses),
sinks.stream(courgette::kStreamAbs32Addresses)));
// Addresses: [16, 7, _, 32].
// Padded: [16, 7, 7, 32].
// Delta: [16, -9, 0, 25].
// Hex: [0x10, 0xFFFFFFF7, 0, 0x19].
// Complement Neg: [0x10, (0x08), 0, 0x19].
// Varint32 Signed: [0x20, 0x11, 0, 0x32].
const uint8 golden_rel32_addresses[] = {
0x04, // 4 address deltas.
0x20, 0x11, 0x00, 0x32,
};
EXPECT_TRUE(CompareSink(golden_rel32_addresses,
arraysize(golden_rel32_addresses),
sinks.stream(courgette::kStreamRel32Addresses)));
}
|