1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
|
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "crypto/aead_openssl.h"
#if defined(USE_OPENSSL)
#include <openssl/aes.h>
#include <openssl/evp.h>
#include <stddef.h>
#include <stdint.h>
#include <string>
#include "base/strings/string_util.h"
#include "crypto/openssl_util.h"
namespace crypto {
Aead::Aead(AeadAlgorithm algorithm) : key_(nullptr) {
EnsureOpenSSLInit();
switch (algorithm) {
case AES_128_CTR_HMAC_SHA256:
aead_ = EVP_aead_aes_128_ctr_hmac_sha256();
break;
}
}
Aead::~Aead() {
}
void Aead::Init(const std::string* key) {
DCHECK(!key_);
DCHECK_EQ(KeyLength(), key->size());
key_ = key;
}
bool Aead::Seal(const base::StringPiece& plaintext,
const base::StringPiece& nonce,
const base::StringPiece& additional_data,
std::string* ciphertext) const {
DCHECK(key_);
DCHECK_EQ(NonceLength(), nonce.size());
EVP_AEAD_CTX ctx;
if (!EVP_AEAD_CTX_init(&ctx, aead_,
reinterpret_cast<const uint8_t*>(key_->data()),
key_->size(), EVP_AEAD_DEFAULT_TAG_LENGTH, nullptr)) {
return false;
}
std::string result;
const size_t max_output_length =
EVP_AEAD_max_overhead(aead_) + plaintext.size();
size_t output_length;
uint8_t* out_ptr = reinterpret_cast<uint8_t*>(
base::WriteInto(&result, max_output_length + 1));
if (!EVP_AEAD_CTX_seal(
&ctx, out_ptr, &output_length, max_output_length,
reinterpret_cast<const uint8_t*>(nonce.data()), nonce.size(),
reinterpret_cast<const uint8_t*>(plaintext.data()), plaintext.size(),
reinterpret_cast<const uint8_t*>(additional_data.data()),
additional_data.size())) {
EVP_AEAD_CTX_cleanup(&ctx);
return false;
}
DCHECK_LE(output_length, max_output_length);
result.resize(output_length);
ciphertext->swap(result);
EVP_AEAD_CTX_cleanup(&ctx);
return true;
}
bool Aead::Open(const base::StringPiece& ciphertext,
const base::StringPiece& nonce,
const base::StringPiece& additional_data,
std::string* plaintext) const {
DCHECK(key_);
EVP_AEAD_CTX ctx;
if (!EVP_AEAD_CTX_init(&ctx, aead_,
reinterpret_cast<const uint8_t*>(key_->data()),
key_->size(), EVP_AEAD_DEFAULT_TAG_LENGTH, nullptr)) {
return false;
}
std::string result;
const size_t max_output_length = ciphertext.size();
size_t output_length;
uint8_t* out_ptr = reinterpret_cast<uint8_t*>(
base::WriteInto(&result, max_output_length + 1));
if (!EVP_AEAD_CTX_open(
&ctx, out_ptr, &output_length, max_output_length,
reinterpret_cast<const uint8_t*>(nonce.data()), nonce.size(),
reinterpret_cast<const uint8_t*>(ciphertext.data()),
ciphertext.size(),
reinterpret_cast<const uint8_t*>(additional_data.data()),
additional_data.size())) {
EVP_AEAD_CTX_cleanup(&ctx);
return false;
}
DCHECK_LE(output_length, max_output_length);
result.resize(output_length);
plaintext->swap(result);
EVP_AEAD_CTX_cleanup(&ctx);
return true;
}
size_t Aead::KeyLength() const {
return EVP_AEAD_key_length(aead_);
}
size_t Aead::NonceLength() const {
return EVP_AEAD_nonce_length(aead_);
}
} // namespace
#endif
|