summaryrefslogtreecommitdiffstats
path: root/crypto/encryptor_nss.cc
blob: c46109031ac88093ac70cf863c389faa53a16c9c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "crypto/encryptor.h"

#include <cryptohi.h>
#include <vector>

#include "base/logging.h"
#include "crypto/nss_util.h"
#include "crypto/symmetric_key.h"

namespace crypto {

namespace {

inline CK_MECHANISM_TYPE GetMechanism(Encryptor::Mode mode) {
  switch (mode) {
    case Encryptor::CBC:
      return CKM_AES_CBC_PAD;
    case Encryptor::CTR:
      // AES-CTR encryption uses ECB encryptor as a building block since
      // NSS doesn't support CTR encryption mode.
      return CKM_AES_ECB;
    default:
      NOTREACHED() << "Unsupported mode of operation";
      break;
  }
  return static_cast<CK_MECHANISM_TYPE>(-1);
}

}  // namespace

Encryptor::Encryptor()
    : key_(NULL),
      mode_(CBC) {
  EnsureNSSInit();
}

Encryptor::~Encryptor() {
}

bool Encryptor::Init(SymmetricKey* key,
                     Mode mode,
                     const base::StringPiece& iv) {
  DCHECK(key);
  DCHECK(CBC == mode || CTR == mode) << "Unsupported mode of operation";

  key_ = key;
  mode_ = mode;

  if (mode == CBC && iv.size() != AES_BLOCK_SIZE)
    return false;

  slot_.reset(PK11_GetBestSlot(GetMechanism(mode), NULL));
  if (!slot_.get())
    return false;

  switch (mode) {
    case CBC:
      SECItem iv_item;
      iv_item.type = siBuffer;
      iv_item.data = reinterpret_cast<unsigned char*>(
          const_cast<char *>(iv.data()));
      iv_item.len = iv.size();

      param_.reset(PK11_ParamFromIV(GetMechanism(mode), &iv_item));
      break;
    case CTR:
      param_.reset(PK11_ParamFromIV(GetMechanism(mode), NULL));
      break;
  }

  if (!param_.get())
    return false;
  return true;
}

bool Encryptor::Encrypt(const base::StringPiece& plaintext,
                        std::string* ciphertext) {
  ScopedPK11Context context(PK11_CreateContextBySymKey(GetMechanism(mode_),
                                                       CKA_ENCRYPT,
                                                       key_->key(),
                                                       param_.get()));
  if (!context.get())
    return false;

  if (mode_ == CTR)
    return CryptCTR(context.get(), plaintext, ciphertext);
  else
    return Crypt(context.get(), plaintext, ciphertext);
}

bool Encryptor::Decrypt(const base::StringPiece& ciphertext,
                        std::string* plaintext) {
  if (ciphertext.empty())
    return false;

  ScopedPK11Context context(PK11_CreateContextBySymKey(
      GetMechanism(mode_), (mode_ == CTR ? CKA_ENCRYPT : CKA_DECRYPT),
      key_->key(), param_.get()));
  if (!context.get())
    return false;

  if (mode_ == CTR)
    return CryptCTR(context.get(), ciphertext, plaintext);
  else
    return Crypt(context.get(), ciphertext, plaintext);
}

bool Encryptor::Crypt(PK11Context* context,
                      const base::StringPiece& input,
                      std::string* output) {
  size_t output_len = input.size() + AES_BLOCK_SIZE;
  CHECK(output_len > input.size()) << "Output size overflow";

  output->resize(output_len);
  uint8* output_data =
      reinterpret_cast<uint8*>(const_cast<char*>(output->data()));

  int input_len = input.size();
  uint8* input_data =
      reinterpret_cast<uint8*>(const_cast<char*>(input.data()));

  int op_len;
  SECStatus rv = PK11_CipherOp(context,
                               output_data,
                               &op_len,
                               output_len,
                               input_data,
                               input_len);

  if (SECSuccess != rv) {
    output->clear();
    return false;
  }

  unsigned int digest_len;
  rv = PK11_DigestFinal(context,
                        output_data + op_len,
                        &digest_len,
                        output_len - op_len);
  if (SECSuccess != rv) {
    output->clear();
    return false;
  }

  output->resize(op_len + digest_len);
  return true;
}

bool Encryptor::CryptCTR(PK11Context* context,
                         const base::StringPiece& input,
                         std::string* output) {
  if (!counter_.get()) {
    LOG(ERROR) << "Counter value not set in CTR mode.";
    return false;
  }

  size_t output_len = ((input.size() + AES_BLOCK_SIZE - 1) / AES_BLOCK_SIZE) *
      AES_BLOCK_SIZE;
  CHECK(output_len >= input.size()) << "Output size overflow";
  output->resize(output_len);
  uint8* output_data =
      reinterpret_cast<uint8*>(const_cast<char*>(output->data()));

  size_t mask_len;
  bool ret = GenerateCounterMask(input.size(), output_data, &mask_len);
  if (!ret)
    return false;

  CHECK_EQ(mask_len, output_len);
  int op_len;
  SECStatus rv = PK11_CipherOp(context,
                               output_data,
                               &op_len,
                               output_len,
                               output_data,
                               mask_len);
  if (SECSuccess != rv)
    return false;
  CHECK(op_len == static_cast<int>(mask_len));

  unsigned int digest_len;
  rv = PK11_DigestFinal(context,
                        NULL,
                        &digest_len,
                        0);
  if (SECSuccess != rv)
    return false;
  CHECK(!digest_len);

  // Use |output_data| to mask |input|.
  MaskMessage(
      reinterpret_cast<uint8*>(const_cast<char*>(input.data())),
      input.length(), output_data, output_data);
  output->resize(input.length());
  return true;
}

}  // namespace crypto