summaryrefslogtreecommitdiffstats
path: root/crypto/encryptor_openssl.cc
blob: 0504adbcb9f74d3c8f9506a69671d7cb4dfd871b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "crypto/encryptor.h"

#include <openssl/aes.h>
#include <openssl/evp.h>

#include "base/logging.h"
#include "base/strings/string_util.h"
#include "crypto/openssl_util.h"
#include "crypto/symmetric_key.h"

namespace crypto {

namespace {

const EVP_CIPHER* GetCipherForKey(SymmetricKey* key) {
  switch (key->key().length()) {
    case 16: return EVP_aes_128_cbc();
    case 32: return EVP_aes_256_cbc();
    default: return NULL;
  }
}

// On destruction this class will cleanup the ctx, and also clear the OpenSSL
// ERR stack as a convenience.
class ScopedCipherCTX {
 public:
  explicit ScopedCipherCTX() {
    EVP_CIPHER_CTX_init(&ctx_);
  }
  ~ScopedCipherCTX() {
    EVP_CIPHER_CTX_cleanup(&ctx_);
    ClearOpenSSLERRStack(FROM_HERE);
  }
  EVP_CIPHER_CTX* get() { return &ctx_; }

 private:
  EVP_CIPHER_CTX ctx_;
};

}  // namespace

Encryptor::Encryptor()
    : key_(NULL),
      mode_(CBC) {
}

Encryptor::~Encryptor() {
}

bool Encryptor::Init(SymmetricKey* key,
                     Mode mode,
                     const base::StringPiece& iv) {
  DCHECK(key);
  DCHECK(mode == CBC || mode == CTR);

  EnsureOpenSSLInit();
  if (mode == CBC && iv.size() != AES_BLOCK_SIZE)
    return false;

  if (GetCipherForKey(key) == NULL)
    return false;

  key_ = key;
  mode_ = mode;
  iv.CopyToString(&iv_);
  return true;
}

bool Encryptor::Encrypt(const base::StringPiece& plaintext,
                        std::string* ciphertext) {
  CHECK(!plaintext.empty() || (mode_ == CBC));
  return (mode_ == CTR) ?
      CryptCTR(true, plaintext, ciphertext) :
      Crypt(true, plaintext, ciphertext);
}

bool Encryptor::Decrypt(const base::StringPiece& ciphertext,
                        std::string* plaintext) {
  CHECK(!ciphertext.empty());
  return (mode_ == CTR) ?
      CryptCTR(false, ciphertext, plaintext) :
      Crypt(false, ciphertext, plaintext);
}

bool Encryptor::Crypt(bool do_encrypt,
                      const base::StringPiece& input,
                      std::string* output) {
  DCHECK(key_);  // Must call Init() before En/De-crypt.
  // Work on the result in a local variable, and then only transfer it to
  // |output| on success to ensure no partial data is returned.
  std::string result;
  output->clear();

  const EVP_CIPHER* cipher = GetCipherForKey(key_);
  DCHECK(cipher);  // Already handled in Init();

  const std::string& key = key_->key();
  DCHECK_EQ(EVP_CIPHER_iv_length(cipher), iv_.length());
  DCHECK_EQ(EVP_CIPHER_key_length(cipher), key.length());

  ScopedCipherCTX ctx;
  if (!EVP_CipherInit_ex(ctx.get(), cipher, NULL,
                         reinterpret_cast<const uint8*>(key.data()),
                         reinterpret_cast<const uint8*>(iv_.data()),
                         do_encrypt))
    return false;

  // When encrypting, add another block size of space to allow for any padding.
  const size_t output_size = input.size() + (do_encrypt ? iv_.size() : 0);
  CHECK_GT(output_size, 0u);
  CHECK_GT(output_size + 1, input.size());
  uint8* out_ptr = reinterpret_cast<uint8*>(WriteInto(&result,
                                                      output_size + 1));
  int out_len;
  if (!EVP_CipherUpdate(ctx.get(), out_ptr, &out_len,
                        reinterpret_cast<const uint8*>(input.data()),
                        input.length()))
    return false;

  // Write out the final block plus padding (if any) to the end of the data
  // just written.
  int tail_len;
  if (!EVP_CipherFinal_ex(ctx.get(), out_ptr + out_len, &tail_len))
    return false;

  out_len += tail_len;
  DCHECK_LE(out_len, static_cast<int>(output_size));
  result.resize(out_len);

  output->swap(result);
  return true;
}

bool Encryptor::CryptCTR(bool do_encrypt,
                         const base::StringPiece& input,
                         std::string* output) {
  if (!counter_.get()) {
    LOG(ERROR) << "Counter value not set in CTR mode.";
    return false;
  }

  AES_KEY aes_key;
  if (AES_set_encrypt_key(reinterpret_cast<const uint8*>(key_->key().data()),
                          key_->key().size() * 8, &aes_key) != 0) {
    return false;
  }

  const size_t out_size = input.size();
  CHECK_GT(out_size, 0u);
  CHECK_GT(out_size + 1, input.size());

  std::string result;
  uint8* out_ptr = reinterpret_cast<uint8*>(WriteInto(&result, out_size + 1));

  uint8_t ivec[AES_BLOCK_SIZE] = { 0 };
  uint8_t ecount_buf[AES_BLOCK_SIZE] = { 0 };
  unsigned int block_offset = 0;

  counter_->Write(ivec);

  AES_ctr128_encrypt(reinterpret_cast<const uint8*>(input.data()), out_ptr,
                     input.size(), &aes_key, ivec, ecount_buf, &block_offset);

  // AES_ctr128_encrypt() updates |ivec|. Update the |counter_| here.
  SetCounter(base::StringPiece(reinterpret_cast<const char*>(ivec),
                               AES_BLOCK_SIZE));

  output->swap(result);
  return true;
}

}  // namespace crypto