summaryrefslogtreecommitdiffstats
path: root/crypto/encryptor_unittest.cc
blob: 5b234d22c3ebb3f53ed094225fdefe3a6fff662b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "crypto/encryptor.h"

#include <string>

#include "base/memory/scoped_ptr.h"
#include "base/strings/string_number_conversions.h"
#include "crypto/symmetric_key.h"
#include "testing/gtest/include/gtest/gtest.h"

TEST(EncryptorTest, EncryptDecrypt) {
  scoped_ptr<crypto::SymmetricKey> key(
      crypto::SymmetricKey::DeriveKeyFromPassword(
          crypto::SymmetricKey::AES, "password", "saltiest", 1000, 256));
  EXPECT_TRUE(NULL != key.get());

  crypto::Encryptor encryptor;
  // The IV must be exactly as long as the cipher block size.
  std::string iv("the iv: 16 bytes");
  EXPECT_EQ(16U, iv.size());
  EXPECT_TRUE(encryptor.Init(key.get(), crypto::Encryptor::CBC, iv));

  std::string plaintext("this is the plaintext");
  std::string ciphertext;
  EXPECT_TRUE(encryptor.Encrypt(plaintext, &ciphertext));

  EXPECT_LT(0U, ciphertext.size());

  std::string decypted;
  EXPECT_TRUE(encryptor.Decrypt(ciphertext, &decypted));

  EXPECT_EQ(plaintext, decypted);
}

TEST(EncryptorTest, DecryptWrongKey) {
  scoped_ptr<crypto::SymmetricKey> key(
      crypto::SymmetricKey::DeriveKeyFromPassword(
          crypto::SymmetricKey::AES, "password", "saltiest", 1000, 256));
  EXPECT_TRUE(NULL != key.get());

  // A wrong key that can be detected by implementations that validate every
  // byte in the padding.
  scoped_ptr<crypto::SymmetricKey> wrong_key(
        crypto::SymmetricKey::DeriveKeyFromPassword(
            crypto::SymmetricKey::AES, "wrongword", "sweetest", 1000, 256));
  EXPECT_TRUE(NULL != wrong_key.get());

  // A wrong key that can't be detected by any implementation.  The password
  // "wrongword;" would also work.
  scoped_ptr<crypto::SymmetricKey> wrong_key2(
        crypto::SymmetricKey::DeriveKeyFromPassword(
            crypto::SymmetricKey::AES, "wrongword+", "sweetest", 1000, 256));
  EXPECT_TRUE(NULL != wrong_key2.get());

  // A wrong key that can be detected by all implementations.
  scoped_ptr<crypto::SymmetricKey> wrong_key3(
        crypto::SymmetricKey::DeriveKeyFromPassword(
            crypto::SymmetricKey::AES, "wrongwordx", "sweetest", 1000, 256));
  EXPECT_TRUE(NULL != wrong_key3.get());

  crypto::Encryptor encryptor;
  // The IV must be exactly as long as the cipher block size.
  std::string iv("the iv: 16 bytes");
  EXPECT_EQ(16U, iv.size());
  EXPECT_TRUE(encryptor.Init(key.get(), crypto::Encryptor::CBC, iv));

  std::string plaintext("this is the plaintext");
  std::string ciphertext;
  EXPECT_TRUE(encryptor.Encrypt(plaintext, &ciphertext));

  static const unsigned char expected_ciphertext[] = {
    0x7D, 0x67, 0x5B, 0x53, 0xE6, 0xD8, 0x0F, 0x27,
    0x74, 0xB1, 0x90, 0xFE, 0x6E, 0x58, 0x4A, 0xA0,
    0x0E, 0x35, 0xE3, 0x01, 0xC0, 0xFE, 0x9A, 0xD8,
    0x48, 0x1D, 0x42, 0xB0, 0xBA, 0x21, 0xB2, 0x0C
  };

  ASSERT_EQ(arraysize(expected_ciphertext), ciphertext.size());
  for (size_t i = 0; i < ciphertext.size(); ++i) {
    ASSERT_EQ(expected_ciphertext[i],
              static_cast<unsigned char>(ciphertext[i]));
  }

  std::string decypted;

  // This wrong key causes the last padding byte to be 5, which is a valid
  // padding length, and the second to last padding byte to be 137, which is
  // invalid.  If an implementation simply uses the last padding byte to
  // determine the padding length without checking every padding byte,
  // Encryptor::Decrypt() will still return true.  This is the case for NSS
  // (crbug.com/124434).
#if !defined(USE_NSS) && !defined(OS_WIN) && !defined(OS_MACOSX)
  crypto::Encryptor decryptor;
  EXPECT_TRUE(decryptor.Init(wrong_key.get(), crypto::Encryptor::CBC, iv));
  EXPECT_FALSE(decryptor.Decrypt(ciphertext, &decypted));
#endif

  // This demonstrates that not all wrong keys can be detected by padding
  // error. This wrong key causes the last padding byte to be 1, which is
  // a valid padding block of length 1.
  crypto::Encryptor decryptor2;
  EXPECT_TRUE(decryptor2.Init(wrong_key2.get(), crypto::Encryptor::CBC, iv));
  EXPECT_TRUE(decryptor2.Decrypt(ciphertext, &decypted));

  // This wrong key causes the last padding byte to be 253, which should be
  // rejected by all implementations.
  crypto::Encryptor decryptor3;
  EXPECT_TRUE(decryptor3.Init(wrong_key3.get(), crypto::Encryptor::CBC, iv));
  EXPECT_FALSE(decryptor3.Decrypt(ciphertext, &decypted));
}

// CTR mode encryption is only implemented using NSS.
#if defined(USE_NSS) || defined(OS_WIN) || defined(OS_MACOSX)

TEST(EncryptorTest, EncryptDecryptCTR) {
  scoped_ptr<crypto::SymmetricKey> key(
      crypto::SymmetricKey::GenerateRandomKey(
          crypto::SymmetricKey::AES, 128));

  EXPECT_TRUE(NULL != key.get());
  const std::string kInitialCounter = "0000000000000000";

  crypto::Encryptor encryptor;
  EXPECT_TRUE(encryptor.Init(key.get(), crypto::Encryptor::CTR, ""));
  EXPECT_TRUE(encryptor.SetCounter(kInitialCounter));

  std::string plaintext("normal plaintext of random length");
  std::string ciphertext;
  EXPECT_TRUE(encryptor.Encrypt(plaintext, &ciphertext));
  EXPECT_LT(0U, ciphertext.size());

  std::string decypted;
  EXPECT_TRUE(encryptor.SetCounter(kInitialCounter));
  EXPECT_TRUE(encryptor.Decrypt(ciphertext, &decypted));
  EXPECT_EQ(plaintext, decypted);

  plaintext = "0123456789012345";
  EXPECT_TRUE(encryptor.SetCounter(kInitialCounter));
  EXPECT_TRUE(encryptor.Encrypt(plaintext, &ciphertext));
  EXPECT_LT(0U, ciphertext.size());

  EXPECT_TRUE(encryptor.SetCounter(kInitialCounter));
  EXPECT_TRUE(encryptor.Decrypt(ciphertext, &decypted));
  EXPECT_EQ(plaintext, decypted);
}

TEST(EncryptorTest, CTRCounter) {
  const int kCounterSize = 16;
  const unsigned char kTest1[] =
      {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
  unsigned char buf[16];

  // Increment 10 times.
  crypto::Encryptor::Counter counter1(
      std::string(reinterpret_cast<const char*>(kTest1), kCounterSize));
  for (int i = 0; i < 10; ++i)
    counter1.Increment();
  counter1.Write(buf);
  EXPECT_EQ(0, memcmp(buf, kTest1, 15));
  EXPECT_TRUE(buf[15] == 10);

  // Check corner cases.
  const unsigned char kTest2[] = {
      0, 0, 0, 0, 0, 0, 0, 0,
      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
  };
  const unsigned char kExpect2[] =
      {0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0};
  crypto::Encryptor::Counter counter2(
      std::string(reinterpret_cast<const char*>(kTest2), kCounterSize));
  counter2.Increment();
  counter2.Write(buf);
  EXPECT_EQ(0, memcmp(buf, kExpect2, kCounterSize));

  const unsigned char kTest3[] = {
      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
  };
  const unsigned char kExpect3[] =
      {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
  crypto::Encryptor::Counter counter3(
      std::string(reinterpret_cast<const char*>(kTest3), kCounterSize));
  counter3.Increment();
  counter3.Write(buf);
  EXPECT_EQ(0, memcmp(buf, kExpect3, kCounterSize));
}

#endif

// TODO(wtc): add more known-answer tests.  Test vectors are available from
// http://www.ietf.org/rfc/rfc3602
// http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
// http://gladman.plushost.co.uk/oldsite/AES/index.php
// http://csrc.nist.gov/groups/STM/cavp/documents/aes/KAT_AES.zip

// NIST SP 800-38A test vector F.2.5 CBC-AES256.Encrypt.
TEST(EncryptorTest, EncryptAES256CBC) {
  // From NIST SP 800-38a test cast F.2.5 CBC-AES256.Encrypt.
  static const unsigned char raw_key[] = {
    0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe,
    0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
    0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7,
    0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4
  };
  static const unsigned char raw_iv[] = {
    0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
    0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f
  };
  static const unsigned char raw_plaintext[] = {
    // Block #1
    0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
    0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
    // Block #2
    0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
    0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
    // Block #3
    0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11,
    0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef,
    // Block #4
    0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17,
    0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10,
  };
  static const unsigned char raw_ciphertext[] = {
    // Block #1
    0xf5, 0x8c, 0x4c, 0x04, 0xd6, 0xe5, 0xf1, 0xba,
    0x77, 0x9e, 0xab, 0xfb, 0x5f, 0x7b, 0xfb, 0xd6,
    // Block #2
    0x9c, 0xfc, 0x4e, 0x96, 0x7e, 0xdb, 0x80, 0x8d,
    0x67, 0x9f, 0x77, 0x7b, 0xc6, 0x70, 0x2c, 0x7d,
    // Block #3
    0x39, 0xf2, 0x33, 0x69, 0xa9, 0xd9, 0xba, 0xcf,
    0xa5, 0x30, 0xe2, 0x63, 0x04, 0x23, 0x14, 0x61,
    // Block #4
    0xb2, 0xeb, 0x05, 0xe2, 0xc3, 0x9b, 0xe9, 0xfc,
    0xda, 0x6c, 0x19, 0x07, 0x8c, 0x6a, 0x9d, 0x1b,
    // PKCS #5 padding, encrypted.
    0x3f, 0x46, 0x17, 0x96, 0xd6, 0xb0, 0xd6, 0xb2,
    0xe0, 0xc2, 0xa7, 0x2b, 0x4d, 0x80, 0xe6, 0x44
  };

  std::string key(reinterpret_cast<const char*>(raw_key), sizeof(raw_key));
  scoped_ptr<crypto::SymmetricKey> sym_key(crypto::SymmetricKey::Import(
      crypto::SymmetricKey::AES, key));
  ASSERT_TRUE(NULL != sym_key.get());

  crypto::Encryptor encryptor;
  // The IV must be exactly as long a the cipher block size.
  std::string iv(reinterpret_cast<const char*>(raw_iv), sizeof(raw_iv));
  EXPECT_EQ(16U, iv.size());
  EXPECT_TRUE(encryptor.Init(sym_key.get(), crypto::Encryptor::CBC, iv));

  std::string plaintext(reinterpret_cast<const char*>(raw_plaintext),
                        sizeof(raw_plaintext));
  std::string ciphertext;
  EXPECT_TRUE(encryptor.Encrypt(plaintext, &ciphertext));

  EXPECT_EQ(sizeof(raw_ciphertext), ciphertext.size());
  EXPECT_EQ(0, memcmp(ciphertext.data(), raw_ciphertext, ciphertext.size()));

  std::string decypted;
  EXPECT_TRUE(encryptor.Decrypt(ciphertext, &decypted));

  EXPECT_EQ(plaintext, decypted);
}

// Expected output derived from the NSS implementation.
TEST(EncryptorTest, EncryptAES128CBCRegression) {
  std::string key = "128=SixteenBytes";
  std::string iv = "Sweet Sixteen IV";
  std::string plaintext = "Plain text with a g-clef U+1D11E \360\235\204\236";
  std::string expected_ciphertext_hex =
      "D4A67A0BA33C30F207344D81D1E944BBE65587C3D7D9939A"
      "C070C62B9C15A3EA312EA4AD1BC7929F4D3C16B03AD5ADA8";

  scoped_ptr<crypto::SymmetricKey> sym_key(crypto::SymmetricKey::Import(
      crypto::SymmetricKey::AES, key));
  ASSERT_TRUE(NULL != sym_key.get());

  crypto::Encryptor encryptor;
  // The IV must be exactly as long a the cipher block size.
  EXPECT_EQ(16U, iv.size());
  EXPECT_TRUE(encryptor.Init(sym_key.get(), crypto::Encryptor::CBC, iv));

  std::string ciphertext;
  EXPECT_TRUE(encryptor.Encrypt(plaintext, &ciphertext));
  EXPECT_EQ(expected_ciphertext_hex, base::HexEncode(ciphertext.data(),
                                                     ciphertext.size()));

  std::string decypted;
  EXPECT_TRUE(encryptor.Decrypt(ciphertext, &decypted));
  EXPECT_EQ(plaintext, decypted);
}

// Expected output derived from the NSS implementation.
TEST(EncryptorTest, EncryptAES192CBCRegression) {
  std::string key = "192bitsIsTwentyFourByte!";
  std::string iv = "Sweet Sixteen IV";
  std::string plaintext = "Small text";
  std::string expected_ciphertext_hex = "78DE5D7C2714FC5C61346C5416F6C89A";

  scoped_ptr<crypto::SymmetricKey> sym_key(crypto::SymmetricKey::Import(
      crypto::SymmetricKey::AES, key));
  ASSERT_TRUE(NULL != sym_key.get());

  crypto::Encryptor encryptor;
  // The IV must be exactly as long a the cipher block size.
  EXPECT_EQ(16U, iv.size());
  EXPECT_TRUE(encryptor.Init(sym_key.get(), crypto::Encryptor::CBC, iv));

  std::string ciphertext;
  EXPECT_TRUE(encryptor.Encrypt(plaintext, &ciphertext));
  EXPECT_EQ(expected_ciphertext_hex, base::HexEncode(ciphertext.data(),
                                                     ciphertext.size()));

  std::string decypted;
  EXPECT_TRUE(encryptor.Decrypt(ciphertext, &decypted));
  EXPECT_EQ(plaintext, decypted);
}

// Not all platforms allow import/generation of symmetric keys with an
// unsupported size.
#if !defined(USE_NSS) && !defined(OS_WIN) && !defined(OS_MACOSX)
TEST(EncryptorTest, UnsupportedKeySize) {
  std::string key = "7 = bad";
  std::string iv = "Sweet Sixteen IV";
  scoped_ptr<crypto::SymmetricKey> sym_key(crypto::SymmetricKey::Import(
      crypto::SymmetricKey::AES, key));
  ASSERT_TRUE(NULL != sym_key.get());

  crypto::Encryptor encryptor;
  // The IV must be exactly as long a the cipher block size.
  EXPECT_EQ(16U, iv.size());
  EXPECT_FALSE(encryptor.Init(sym_key.get(), crypto::Encryptor::CBC, iv));
}
#endif  // unsupported platforms.

TEST(EncryptorTest, UnsupportedIV) {
  std::string key = "128=SixteenBytes";
  std::string iv = "OnlyForteen :(";
  scoped_ptr<crypto::SymmetricKey> sym_key(crypto::SymmetricKey::Import(
      crypto::SymmetricKey::AES, key));
  ASSERT_TRUE(NULL != sym_key.get());

  crypto::Encryptor encryptor;
  EXPECT_FALSE(encryptor.Init(sym_key.get(), crypto::Encryptor::CBC, iv));
}

TEST(EncryptorTest, EmptyEncrypt) {
  std::string key = "128=SixteenBytes";
  std::string iv = "Sweet Sixteen IV";
  std::string plaintext;
  std::string expected_ciphertext_hex = "8518B8878D34E7185E300D0FCC426396";

  scoped_ptr<crypto::SymmetricKey> sym_key(crypto::SymmetricKey::Import(
      crypto::SymmetricKey::AES, key));
  ASSERT_TRUE(NULL != sym_key.get());

  crypto::Encryptor encryptor;
  // The IV must be exactly as long a the cipher block size.
  EXPECT_EQ(16U, iv.size());
  EXPECT_TRUE(encryptor.Init(sym_key.get(), crypto::Encryptor::CBC, iv));

  std::string ciphertext;
  EXPECT_TRUE(encryptor.Encrypt(plaintext, &ciphertext));
  EXPECT_EQ(expected_ciphertext_hex, base::HexEncode(ciphertext.data(),
                                                     ciphertext.size()));
}