summaryrefslogtreecommitdiffstats
path: root/crypto/p224_spake.cc
blob: 3d83e2541c774810b849d07459a3a9e9c31a3947 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// This code implements SPAKE2, a varient of EKE:
//  http://www.di.ens.fr/~pointche/pub.php?reference=AbPo04

#include <crypto/p224_spake.h>

#include <base/logging.h>
#include <base/rand_util.h>
#include <crypto/p224.h>
#include <crypto/secure_util.h>

namespace {

// The following two points (M and N in the protocol) are verifiable random
// points on the curve and can be generated with the following code:

// #include <stdint.h>
// #include <stdio.h>
// #include <string.h>
//
// #include <openssl/ec.h>
// #include <openssl/obj_mac.h>
// #include <openssl/sha.h>
//
// static const char kSeed1[] = "P224 point generation seed (M)";
// static const char kSeed2[] = "P224 point generation seed (N)";
//
// void find_seed(const char* seed) {
//   SHA256_CTX sha256;
//   uint8_t digest[SHA256_DIGEST_LENGTH];
//
//   SHA256_Init(&sha256);
//   SHA256_Update(&sha256, seed, strlen(seed));
//   SHA256_Final(digest, &sha256);
//
//   BIGNUM x, y;
//   EC_GROUP* p224 = EC_GROUP_new_by_curve_name(NID_secp224r1);
//   EC_POINT* p = EC_POINT_new(p224);
//
//   for (unsigned i = 0;; i++) {
//     BN_init(&x);
//     BN_bin2bn(digest, 28, &x);
//
//     if (EC_POINT_set_compressed_coordinates_GFp(
//             p224, p, &x, digest[28] & 1, NULL)) {
//       BN_init(&y);
//       EC_POINT_get_affine_coordinates_GFp(p224, p, &x, &y, NULL);
//       char* x_str = BN_bn2hex(&x);
//       char* y_str = BN_bn2hex(&y);
//       printf("Found after %u iterations:\n%s\n%s\n", i, x_str, y_str);
//       OPENSSL_free(x_str);
//       OPENSSL_free(y_str);
//       BN_free(&x);
//       BN_free(&y);
//       break;
//     }
//
//     SHA256_Init(&sha256);
//     SHA256_Update(&sha256, digest, sizeof(digest));
//     SHA256_Final(digest, &sha256);
//
//     BN_free(&x);
//   }
//
//   EC_POINT_free(p);
//   EC_GROUP_free(p224);
// }
//
// int main() {
//   find_seed(kSeed1);
//   find_seed(kSeed2);
//   return 0;
// }

const crypto::p224::Point kM = {
  {174237515, 77186811, 235213682, 33849492,
   33188520, 48266885, 177021753, 81038478},
  {104523827, 245682244, 266509668, 236196369,
   28372046, 145351378, 198520366, 113345994},
  {1, 0, 0, 0, 0, 0, 0},
};

const crypto::p224::Point kN = {
  {136176322, 263523628, 251628795, 229292285,
   5034302, 185981975, 171998428, 11653062},
  {197567436, 51226044, 60372156, 175772188,
   42075930, 8083165, 160827401, 65097570},
  {1, 0, 0, 0, 0, 0, 0},
};

}  // anonymous namespace

namespace crypto {

P224EncryptedKeyExchange::P224EncryptedKeyExchange(
    PeerType peer_type,
    const base::StringPiece& password,
    const base::StringPiece& session)
    : state_(kStateInitial),
      is_server_(peer_type == kPeerTypeServer) {
  // x_ is a random scalar.
  base::RandBytes(x_, sizeof(x_));

  // X = g**x_
  p224::Point X;
  p224::ScalarBaseMult(x_, &X);

  // The "password" in the SPAKE2 protocol is
  // SHA256(P(password) + P(session)) where P is function that prepends a
  // uint32, big-endian length prefix.
  uint8 password_length[4], session_length[4];
  password_length[0] = password.size() >> 24;
  password_length[1] = password.size() >> 16;
  password_length[2] = password.size() >> 8;
  password_length[3] = password.size();
  session_length[0] = session.size() >> 24;
  session_length[1] = session.size() >> 16;
  session_length[2] = session.size() >> 8;
  session_length[3] = session.size();
  SHA256HashString(std::string(reinterpret_cast<const char *>(password_length),
                               sizeof(password_length)) +
                   password.as_string() +
                   std::string(reinterpret_cast<const char *>(session_length),
                               sizeof(session_length)) +
                   session.as_string(),
                   pw_,
                   sizeof(pw_));

  // The client masks the Diffie-Hellman value, X, by adding M**pw and the
  // server uses N**pw.
  p224::Point MNpw;
  p224::ScalarMult(is_server_ ? kN : kM, pw_, &MNpw);

  // X* = X + (N|M)**pw
  p224::Point Xstar;
  p224::Add(X, MNpw, &Xstar);

  next_message_ = Xstar.ToString();
}

const std::string& P224EncryptedKeyExchange::GetMessage() {
  if (state_ == kStateInitial) {
    state_ = kStateRecvDH;
    return next_message_;
  } else if (state_ == kStateSendHash) {
    state_ = kStateRecvHash;
    return next_message_;
  }

  LOG(FATAL) << "P224EncryptedKeyExchange::GetMessage called in"
                " bad state " << state_;
  next_message_ = "";
  return next_message_;
}

P224EncryptedKeyExchange::Result P224EncryptedKeyExchange::ProcessMessage(
    const base::StringPiece& message) {
  if (state_ == kStateRecvHash) {
    // This is the final state of the protocol: we are reading the peer's
    // authentication hash and checking that it matches the one that we expect.
    if (message.size() != sizeof(expected_authenticator_)) {
      error_ = "peer's hash had an incorrect size";
      return kResultFailed;
    }
    if (!SecureMemEqual(message.data(), expected_authenticator_,
                        message.size())) {
      error_ = "peer's hash had incorrect value";
      return kResultFailed;
    }
    state_ = kStateDone;
    return kResultSuccess;
  }

  if (state_ != kStateRecvDH) {
    LOG(FATAL) << "P224EncryptedKeyExchange::ProcessMessage called in"
                  " bad state " << state_;
    error_ = "internal error";
    return kResultFailed;
  }

  // Y* is the other party's masked, Diffie-Hellman value.
  p224::Point Ystar;
  if (!Ystar.SetFromString(message)) {
    error_ = "failed to parse peer's masked Diffie-Hellman value";
    return kResultFailed;
  }

  // We calculate the mask value: (N|M)**pw
  p224::Point MNpw, minus_MNpw, Y, k;
  p224::ScalarMult(is_server_ ? kM : kN, pw_, &MNpw);
  p224::Negate(MNpw, &minus_MNpw);

  // Y = Y* - (N|M)**pw
  p224::Add(Ystar, minus_MNpw, &Y);

  // K = Y**x_
  p224::ScalarMult(Y, x_, &k);

  // If everything worked out, then K is the same for both parties.
  std::string k_str = k.ToString();

  std::string client_masked_dh, server_masked_dh;
  if (is_server_) {
    client_masked_dh = message.as_string();
    server_masked_dh = next_message_;
  } else {
    client_masked_dh = next_message_;
    server_masked_dh = message.as_string();
  }

  // Now we calculate the hashes that each side will use to prove to the other
  // that they derived the correct value for K.
  uint8 client_hash[kSHA256Length], server_hash[kSHA256Length];
  CalculateHash(kPeerTypeClient, client_masked_dh, server_masked_dh, k_str,
                client_hash);
  CalculateHash(kPeerTypeServer, client_masked_dh, server_masked_dh, k_str,
                server_hash);

  const uint8* my_hash = is_server_ ? server_hash : client_hash;
  const uint8* their_hash = is_server_ ? client_hash : server_hash;

  next_message_ =
      std::string(reinterpret_cast<const char*>(my_hash), kSHA256Length);
  memcpy(expected_authenticator_, their_hash, kSHA256Length);
  state_ = kStateSendHash;
  return kResultPending;
}

void P224EncryptedKeyExchange::CalculateHash(
    PeerType peer_type,
    const std::string& client_masked_dh,
    const std::string& server_masked_dh,
    const std::string& k,
    uint8* out_digest) {
  std::string hash_contents;

  if (peer_type == kPeerTypeServer) {
    hash_contents = "server";
  } else {
    hash_contents = "client";
  }

  hash_contents += client_masked_dh;
  hash_contents += server_masked_dh;
  hash_contents +=
      std::string(reinterpret_cast<const char *>(pw_), sizeof(pw_));
  hash_contents += k;

  SHA256HashString(hash_contents, out_digest, kSHA256Length);
}

const std::string& P224EncryptedKeyExchange::error() const {
  return error_;
}

}  // namespace crypto