summaryrefslogtreecommitdiffstats
path: root/gin/function_template.h
blob: 1c8e2bef6bb468171cf17e55f58a2fdca2eb5969 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef GIN_FUNCTION_TEMPLATE_H_
#define GIN_FUNCTION_TEMPLATE_H_

#include "base/callback.h"
#include "base/logging.h"
#include "gin/arguments.h"
#include "gin/converter.h"
#include "gin/gin_export.h"
#include "v8/include/v8.h"

namespace gin {

class PerIsolateData;

enum CreateFunctionTemplateFlags {
  HolderIsFirstArgument = 1 << 0,
};

namespace internal {

template<typename T>
struct CallbackParamTraits {
  typedef T LocalType;
};
template<typename T>
struct CallbackParamTraits<const T&> {
  typedef T LocalType;
};
template<typename T>
struct CallbackParamTraits<const T*> {
  typedef T* LocalType;
};


// CallbackHolder and CallbackHolderBase are used to pass a base::Callback from
// CreateFunctionTemplate through v8 (via v8::FunctionTemplate) to
// DispatchToCallback, where it is invoked.

// This simple base class is used so that we can share a single object template
// among every CallbackHolder instance.
class GIN_EXPORT CallbackHolderBase {
 public:
  v8::Handle<v8::External> GetHandle(v8::Isolate* isolate);

 protected:
  explicit CallbackHolderBase(v8::Isolate* isolate);
  virtual ~CallbackHolderBase();

 private:
  static void FirstWeakCallback(
      const v8::WeakCallbackInfo<CallbackHolderBase>& data);
  static void SecondWeakCallback(
      const v8::WeakCallbackInfo<CallbackHolderBase>& data);

  v8::Global<v8::External> v8_ref_;

  DISALLOW_COPY_AND_ASSIGN(CallbackHolderBase);
};

template<typename Sig>
class CallbackHolder : public CallbackHolderBase {
 public:
  CallbackHolder(v8::Isolate* isolate,
                 const base::Callback<Sig>& callback,
                 int flags)
      : CallbackHolderBase(isolate), callback(callback), flags(flags) {}
  base::Callback<Sig> callback;
  int flags;
 private:
  virtual ~CallbackHolder() {}

  DISALLOW_COPY_AND_ASSIGN(CallbackHolder);
};

template<typename T>
bool GetNextArgument(Arguments* args, int create_flags, bool is_first,
                     T* result) {
  if (is_first && (create_flags & HolderIsFirstArgument) != 0) {
    return args->GetHolder(result);
  } else {
    return args->GetNext(result);
  }
}

// For advanced use cases, we allow callers to request the unparsed Arguments
// object and poke around in it directly.
inline bool GetNextArgument(Arguments* args, int create_flags, bool is_first,
                            Arguments* result) {
  *result = *args;
  return true;
}
inline bool GetNextArgument(Arguments* args, int create_flags, bool is_first,
                            Arguments** result) {
  *result = args;
  return true;
}

// It's common for clients to just need the isolate, so we make that easy.
inline bool GetNextArgument(Arguments* args, int create_flags,
                            bool is_first, v8::Isolate** result) {
  *result = args->isolate();
  return true;
}

// Classes for generating and storing an argument pack of integer indices
// (based on well-known "indices trick", see: http://goo.gl/bKKojn):
template <size_t... indices>
struct IndicesHolder {};

template <size_t requested_index, size_t... indices>
struct IndicesGenerator {
  using type = typename IndicesGenerator<requested_index - 1,
                                         requested_index - 1,
                                         indices...>::type;
};
template <size_t... indices>
struct IndicesGenerator<0, indices...> {
  using type = IndicesHolder<indices...>;
};

// Class template for extracting and storing single argument for callback
// at position |index|.
template <size_t index, typename ArgType>
struct ArgumentHolder {
  using ArgLocalType = typename CallbackParamTraits<ArgType>::LocalType;

  ArgLocalType value;
  bool ok;

  ArgumentHolder(Arguments* args, int create_flags)
      : ok(GetNextArgument(args, create_flags, index == 0, &value)) {
    if (!ok) {
      // Ideally we would include the expected c++ type in the error
      // message which we can access via typeid(ArgType).name()
      // however we compile with no-rtti, which disables typeid.
      args->ThrowError();
    }
  }
};

// Class template for converting arguments from JavaScript to C++ and running
// the callback with them.
template <typename IndicesType, typename... ArgTypes>
class Invoker {};

template <size_t... indices, typename... ArgTypes>
class Invoker<IndicesHolder<indices...>, ArgTypes...>
    : public ArgumentHolder<indices, ArgTypes>... {
 public:
  // Invoker<> inherits from ArgumentHolder<> for each argument.
  // C++ has always been strict about the class initialization order,
  // so it is guaranteed ArgumentHolders will be initialized (and thus, will
  // extract arguments from Arguments) in the right order.
  Invoker(Arguments* args, int create_flags)
      : ArgumentHolder<indices, ArgTypes>(args, create_flags)..., args_(args) {
    // GCC thinks that create_flags is going unused, even though the
    // expansion above clearly makes use of it. Per jyasskin@, casting
    // to void is the commonly accepted way to convince the compiler
    // that you're actually using a parameter/varible.
    (void)create_flags;
  }

  bool IsOK() {
    return And(ArgumentHolder<indices, ArgTypes>::ok...);
  }

  template <typename ReturnType>
  void DispatchToCallback(base::Callback<ReturnType(ArgTypes...)> callback) {
    args_->Return(callback.Run(ArgumentHolder<indices, ArgTypes>::value...));
  }

  // In C++, you can declare the function foo(void), but you can't pass a void
  // expression to foo. As a result, we must specialize the case of Callbacks
  // that have the void return type.
  void DispatchToCallback(base::Callback<void(ArgTypes...)> callback) {
    callback.Run(ArgumentHolder<indices, ArgTypes>::value...);
  }

 private:
  static bool And() { return true; }
  template <typename... T>
  static bool And(bool arg1, T... args) {
    return arg1 && And(args...);
  }

  Arguments* args_;
};

// DispatchToCallback converts all the JavaScript arguments to C++ types and
// invokes the base::Callback.
template <typename Sig>
struct Dispatcher {};

template <typename ReturnType, typename... ArgTypes>
struct Dispatcher<ReturnType(ArgTypes...)> {
  static void DispatchToCallback(
      const v8::FunctionCallbackInfo<v8::Value>& info) {
    Arguments args(info);
    v8::Handle<v8::External> v8_holder;
    CHECK(args.GetData(&v8_holder));
    CallbackHolderBase* holder_base = reinterpret_cast<CallbackHolderBase*>(
        v8_holder->Value());

    typedef CallbackHolder<ReturnType(ArgTypes...)> HolderT;
    HolderT* holder = static_cast<HolderT*>(holder_base);

    using Indices = typename IndicesGenerator<sizeof...(ArgTypes)>::type;
    Invoker<Indices, ArgTypes...> invoker(&args, holder->flags);
    if (invoker.IsOK())
      invoker.DispatchToCallback(holder->callback);
  }
};

}  // namespace internal


// CreateFunctionTemplate creates a v8::FunctionTemplate that will create
// JavaScript functions that execute a provided C++ function or base::Callback.
// JavaScript arguments are automatically converted via gin::Converter, as is
// the return value of the C++ function, if any.
//
// NOTE: V8 caches FunctionTemplates for a lifetime of a web page for its own
// internal reasons, thus it is generally a good idea to cache the template
// returned by this function.  Otherwise, repeated method invocations from JS
// will create substantial memory leaks. See http://crbug.com/463487.
template<typename Sig>
v8::Local<v8::FunctionTemplate> CreateFunctionTemplate(
    v8::Isolate* isolate, const base::Callback<Sig> callback,
    int callback_flags = 0) {
  typedef internal::CallbackHolder<Sig> HolderT;
  HolderT* holder = new HolderT(isolate, callback, callback_flags);

  return v8::FunctionTemplate::New(
      isolate,
      &internal::Dispatcher<Sig>::DispatchToCallback,
      ConvertToV8<v8::Handle<v8::External> >(isolate,
                                             holder->GetHandle(isolate)));
}

// CreateFunctionHandler installs a CallAsFunction handler on the given
// object template that forwards to a provided C++ function or base::Callback.
template<typename Sig>
void CreateFunctionHandler(v8::Isolate* isolate,
                           v8::Local<v8::ObjectTemplate> tmpl,
                           const base::Callback<Sig> callback,
                           int callback_flags = 0) {
  typedef internal::CallbackHolder<Sig> HolderT;
  HolderT* holder = new HolderT(isolate, callback, callback_flags);
  tmpl->SetCallAsFunctionHandler(&internal::Dispatcher<Sig>::DispatchToCallback,
                                 ConvertToV8<v8::Handle<v8::External> >(
                                     isolate, holder->GetHandle(isolate)));
}

}  // namespace gin

#endif  // GIN_FUNCTION_TEMPLATE_H_