1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
|
// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Scopers help you manage ownership of a pointer, helping you easily manage the
// a pointer within a scope, and automatically destroying the pointer at the
// end of a scope. There are two main classes you will use, which coorespond
// to the operators new/delete and new[]/delete[].
//
// Example usage (scoped_ptr):
// {
// scoped_ptr<Foo> foo(new Foo("wee"));
// } // foo goes out of scope, releasing the pointer with it.
//
// {
// scoped_ptr<Foo> foo; // No pointer managed.
// foo.reset(new Foo("wee")); // Now a pointer is managed.
// foo.reset(new Foo("wee2")); // Foo("wee") was destroyed.
// foo.reset(new Foo("wee3")); // Foo("wee2") was destroyed.
// foo->Method(); // Foo::Method() called.
// foo.get()->Method(); // Foo::Method() called.
// SomeFunc(foo.release()); // SomeFunc takes owernship, foo no longer
// // manages a pointer.
// foo.reset(new Foo("wee4")); // foo manages a pointer again.
// foo.reset(); // Foo("wee4") destroyed, foo no longer
// // manages a pointer.
// } // foo wasn't managing a pointer, so nothing was destroyed.
//
// Example usage (scoped_array):
// {
// scoped_array<Foo> foo(new Foo[100]);
// foo.get()->Method(); // Foo::Method on the 0th element.
// foo[10].Method(); // Foo::Method on the 10th element.
// }
#ifndef GPU_COMMAND_BUFFER_COMMON_SCOPED_PTR_H_
#define GPU_COMMAND_BUFFER_COMMON_SCOPED_PTR_H_
// This is an implementation designed to match the anticipated future TR2
// implementation of the scoped_ptr class, and its closely-related brethren,
// scoped_array, scoped_ptr_malloc.
#include <assert.h>
#include <stdlib.h>
#include <cstddef>
namespace gpu {
// A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
// automatically deletes the pointer it holds (if any).
// That is, scoped_ptr<T> owns the T object that it points to.
// Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object.
// Also like T*, scoped_ptr<T> is thread-compatible, and once you
// dereference it, you get the threadsafety guarantees of T.
//
// The size of a scoped_ptr is small:
// sizeof(scoped_ptr<C>) == sizeof(C*)
template <class C>
class scoped_ptr {
public:
// The element type
typedef C element_type;
// Constructor. Defaults to intializing with NULL.
// There is no way to create an uninitialized scoped_ptr.
// The input parameter must be allocated with new.
explicit scoped_ptr(C* p = NULL) : ptr_(p) { }
// Destructor. If there is a C object, delete it.
// We don't need to test ptr_ == NULL because C++ does that for us.
~scoped_ptr() {
enum { type_must_be_complete = sizeof(C) };
delete ptr_;
}
// Reset. Deletes the current owned object, if any.
// Then takes ownership of a new object, if given.
// this->reset(this->get()) works.
void reset(C* p = NULL) {
if (p != ptr_) {
enum { type_must_be_complete = sizeof(C) };
delete ptr_;
ptr_ = p;
}
}
// Accessors to get the owned object.
// operator* and operator-> will assert() if there is no current object.
C& operator*() const {
assert(ptr_ != NULL);
return *ptr_;
}
C* operator->() const {
assert(ptr_ != NULL);
return ptr_;
}
C* get() const { return ptr_; }
// Comparison operators.
// These return whether two scoped_ptr refer to the same object, not just to
// two different but equal objects.
bool operator==(C* p) const { return ptr_ == p; }
bool operator!=(C* p) const { return ptr_ != p; }
// Swap two scoped pointers.
void swap(scoped_ptr& p2) {
C* tmp = ptr_;
ptr_ = p2.ptr_;
p2.ptr_ = tmp;
}
// Release a pointer.
// The return value is the current pointer held by this object.
// If this object holds a NULL pointer, the return value is NULL.
// After this operation, this object will hold a NULL pointer,
// and will not own the object any more.
C* release() {
C* retVal = ptr_;
ptr_ = NULL;
return retVal;
}
private:
C* ptr_;
// Forbid comparison of scoped_ptr types. If C2 != C, it totally doesn't
// make sense, and if C2 == C, it still doesn't make sense because you should
// never have the same object owned by two different scoped_ptrs.
template <class C2> bool operator==(scoped_ptr<C2> const& p2) const;
template <class C2> bool operator!=(scoped_ptr<C2> const& p2) const;
// Disallow evil constructors
scoped_ptr(const scoped_ptr&);
void operator=(const scoped_ptr&);
};
// Free functions
template <class C>
void swap(scoped_ptr<C>& p1, scoped_ptr<C>& p2) {
p1.swap(p2);
}
template <class C>
bool operator==(C* p1, const scoped_ptr<C>& p2) {
return p1 == p2.get();
}
template <class C>
bool operator!=(C* p1, const scoped_ptr<C>& p2) {
return p1 != p2.get();
}
// scoped_array<C> is like scoped_ptr<C>, except that the caller must allocate
// with new [] and the destructor deletes objects with delete [].
//
// As with scoped_ptr<C>, a scoped_array<C> either points to an object
// or is NULL. A scoped_array<C> owns the object that it points to.
// scoped_array<T> is thread-compatible, and once you index into it,
// the returned objects have only the threadsafety guarantees of T.
//
// Size: sizeof(scoped_array<C>) == sizeof(C*)
template <class C>
class scoped_array {
public:
// The element type
typedef C element_type;
// Constructor. Defaults to intializing with NULL.
// There is no way to create an uninitialized scoped_array.
// The input parameter must be allocated with new [].
explicit scoped_array(C* p = NULL) : array_(p) { }
// Destructor. If there is a C object, delete it.
// We don't need to test ptr_ == NULL because C++ does that for us.
~scoped_array() {
enum { type_must_be_complete = sizeof(C) };
delete[] array_;
}
// Reset. Deletes the current owned object, if any.
// Then takes ownership of a new object, if given.
// this->reset(this->get()) works.
void reset(C* p = NULL) {
if (p != array_) {
enum { type_must_be_complete = sizeof(C) };
delete[] array_;
array_ = p;
}
}
// Get one element of the current object.
// Will assert() if there is no current object, or index i is negative.
C& operator[](std::ptrdiff_t i) const {
assert(i >= 0);
assert(array_ != NULL);
return array_[i];
}
// Get a pointer to the zeroth element of the current object.
// If there is no current object, return NULL.
C* get() const {
return array_;
}
// Comparison operators.
// These return whether two scoped_array refer to the same object, not just to
// two different but equal objects.
bool operator==(C* p) const { return array_ == p; }
bool operator!=(C* p) const { return array_ != p; }
// Swap two scoped arrays.
void swap(scoped_array& p2) {
C* tmp = array_;
array_ = p2.array_;
p2.array_ = tmp;
}
// Release an array.
// The return value is the current pointer held by this object.
// If this object holds a NULL pointer, the return value is NULL.
// After this operation, this object will hold a NULL pointer,
// and will not own the object any more.
C* release() {
C* retVal = array_;
array_ = NULL;
return retVal;
}
private:
C* array_;
// Forbid comparison of different scoped_array types.
template <class C2> bool operator==(scoped_array<C2> const& p2) const;
template <class C2> bool operator!=(scoped_array<C2> const& p2) const;
// Disallow evil constructors
scoped_array(const scoped_array&);
void operator=(const scoped_array&);
};
// Free functions
template <class C>
void swap(scoped_array<C>& p1, scoped_array<C>& p2) {
p1.swap(p2);
}
template <class C>
bool operator==(C* p1, const scoped_array<C>& p2) {
return p1 == p2.get();
}
template <class C>
bool operator!=(C* p1, const scoped_array<C>& p2) {
return p1 != p2.get();
}
// This class wraps the c library function free() in a class that can be
// passed as a template argument to scoped_ptr_malloc below.
class ScopedPtrMallocFree {
public:
inline void operator()(void* x) const {
free(x);
}
};
// scoped_ptr_malloc<> is similar to scoped_ptr<>, but it accepts a
// second template argument, the functor used to free the object.
template<class C, class FreeProc = ScopedPtrMallocFree>
class scoped_ptr_malloc {
public:
// The element type
typedef C element_type;
// Constructor. Defaults to intializing with NULL.
// There is no way to create an uninitialized scoped_ptr.
// The input parameter must be allocated with an allocator that matches the
// Free functor. For the default Free functor, this is malloc, calloc, or
// realloc.
explicit scoped_ptr_malloc(C* p = NULL): ptr_(p) {}
// Destructor. If there is a C object, call the Free functor.
~scoped_ptr_malloc() {
free_(ptr_);
}
// Reset. Calls the Free functor on the current owned object, if any.
// Then takes ownership of a new object, if given.
// this->reset(this->get()) works.
void reset(C* p = NULL) {
if (ptr_ != p) {
free_(ptr_);
ptr_ = p;
}
}
// Get the current object.
// operator* and operator-> will cause an assert() failure if there is
// no current object.
C& operator*() const {
assert(ptr_ != NULL);
return *ptr_;
}
C* operator->() const {
assert(ptr_ != NULL);
return ptr_;
}
C* get() const {
return ptr_;
}
// Comparison operators.
// These return whether a scoped_ptr_malloc and a plain pointer refer
// to the same object, not just to two different but equal objects.
// For compatibility wwith the boost-derived implementation, these
// take non-const arguments.
bool operator==(C* p) const {
return ptr_ == p;
}
bool operator!=(C* p) const {
return ptr_ != p;
}
// Swap two scoped pointers.
void swap(scoped_ptr_malloc & b) {
C* tmp = b.ptr_;
b.ptr_ = ptr_;
ptr_ = tmp;
}
// Release a pointer.
// The return value is the current pointer held by this object.
// If this object holds a NULL pointer, the return value is NULL.
// After this operation, this object will hold a NULL pointer,
// and will not own the object any more.
C* release() {
C* tmp = ptr_;
ptr_ = NULL;
return tmp;
}
private:
C* ptr_;
// no reason to use these: each scoped_ptr_malloc should have its own object
template <class C2, class GP>
bool operator==(scoped_ptr_malloc<C2, GP> const& p) const;
template <class C2, class GP>
bool operator!=(scoped_ptr_malloc<C2, GP> const& p) const;
static FreeProc const free_;
// Disallow evil constructors
scoped_ptr_malloc(const scoped_ptr_malloc&);
void operator=(const scoped_ptr_malloc&);
};
template<class C, class FP>
FP const scoped_ptr_malloc<C, FP>::free_ = FP();
template<class C, class FP> inline
void swap(scoped_ptr_malloc<C, FP>& a, scoped_ptr_malloc<C, FP>& b) {
a.swap(b);
}
template<class C, class FP> inline
bool operator==(C* p, const scoped_ptr_malloc<C, FP>& b) {
return p == b.get();
}
template<class C, class FP> inline
bool operator!=(C* p, const scoped_ptr_malloc<C, FP>& b) {
return p != b.get();
}
} // namespace gpu
#endif // GPU_COMMAND_BUFFER_COMMON_SCOPED_PTR_H_
|