summaryrefslogtreecommitdiffstats
path: root/ipc/ipc_message_utils.h
blob: 224b19464ce19749e1ae4182b4945765f97260ad (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
// Copyright (c) 2010 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef IPC_IPC_MESSAGE_UTILS_H_
#define IPC_IPC_MESSAGE_UTILS_H_
#pragma once

#include <algorithm>
#include <string>
#include <vector>
#include <map>
#include <set>

#include "base/format_macros.h"
#include "base/string16.h"
#include "base/string_util.h"
#include "base/tuple.h"
#include "ipc/ipc_param_traits.h"
#include "ipc/ipc_sync_message.h"

#if defined(COMPILER_GCC)
// GCC "helpfully" tries to inline template methods in release mode. Except we
// want the majority of the template junk being expanded once in the
// implementation file (and only provide the definitions in
// ipc_message_utils_impl.h in those files) and exported, instead of expanded
// at every call site. Special note: GCC happily accepts the attribute before
// the method declaration, but only acts on it if it is after.
#if (__GNUC__ * 10000 + __GNUC_MINOR__ * 100) >= 40500
// Starting in gcc 4.5, the noinline no longer implies the concept covered by
// the introduced noclone attribute, which will create specialized versions of
// functions/methods when certain types are constant.
// www.gnu.org/software/gcc/gcc-4.5/changes.html
#define IPC_MSG_NOINLINE  __attribute__((noinline, noclone));
#else
#define IPC_MSG_NOINLINE  __attribute__((noinline));
#endif
#elif defined(COMPILER_MSVC)
// MSVC++ doesn't do this.
#define IPC_MSG_NOINLINE
#else
#error "Please add the noinline property for your new compiler here."
#endif

// Used by IPC_BEGIN_MESSAGES so that each message class starts from a unique
// base.  Messages have unique IDs across channels in order for the IPC logging
// code to figure out the message class from its ID.
enum IPCMessageStart {
  AutomationMsgStart = 0,
  ViewMsgStart,
  PluginMsgStart,
  ProfileImportMsgStart,
  TestMsgStart,
  DevToolsMsgStart,
  WorkerMsgStart,
  NaClMsgStart,
  UtilityMsgStart,
  GpuMsgStart,
  ServiceMsgStart,
  PpapiMsgStart,
  FirefoxImporterUnittestMsgStart,
  FileUtilitiesMsgStart,
  MimeRegistryMsgStart,
  DatabaseMsgStart,
  DOMStorageMsgStart,
  IndexedDBMsgStart,
};

class DictionaryValue;
class FilePath;
class ListValue;
class NullableString16;

namespace base {
class Time;
class TimeDelta;
struct FileDescriptor;
}

namespace IPC {

struct ChannelHandle;

//-----------------------------------------------------------------------------
// An iterator class for reading the fields contained within a Message.

class MessageIterator {
 public:
  explicit MessageIterator(const Message& m) : msg_(m), iter_(NULL) {
  }
  int NextInt() const {
    int val = -1;
    if (!msg_.ReadInt(&iter_, &val))
      NOTREACHED();
    return val;
  }
  const std::string NextString() const {
    std::string val;
    if (!msg_.ReadString(&iter_, &val))
      NOTREACHED();
    return val;
  }
  const std::wstring NextWString() const {
    std::wstring val;
    if (!msg_.ReadWString(&iter_, &val))
      NOTREACHED();
    return val;
  }
  void NextData(const char** data, int* length) const {
    if (!msg_.ReadData(&iter_, data, length)) {
      NOTREACHED();
    }
  }
 private:
  const Message& msg_;
  mutable void* iter_;
};

//-----------------------------------------------------------------------------
// ParamTraits specializations, etc.

template <class P>
static inline void WriteParam(Message* m, const P& p) {
  typedef typename SimilarTypeTraits<P>::Type Type;
  ParamTraits<Type>::Write(m, static_cast<const Type& >(p));
}

template <class P>
static inline bool WARN_UNUSED_RESULT ReadParam(const Message* m, void** iter,
                                                P* p) {
  typedef typename SimilarTypeTraits<P>::Type Type;
  return ParamTraits<Type>::Read(m, iter, reinterpret_cast<Type* >(p));
}

template <class P>
static inline void LogParam(const P& p, std::string* l) {
  typedef typename SimilarTypeTraits<P>::Type Type;
  ParamTraits<Type>::Log(static_cast<const Type& >(p), l);
}

template <>
struct ParamTraits<bool> {
  typedef bool param_type;
  static void Write(Message* m, const param_type& p) {
    m->WriteBool(p);
  }
  static bool Read(const Message* m, void** iter, param_type* r) {
    return m->ReadBool(iter, r);
  }
  static void Log(const param_type& p, std::string* l) {
    l->append(p ? "true" : "false");
  }
};

template <>
struct ParamTraits<int> {
  typedef int param_type;
  static void Write(Message* m, const param_type& p) {
    m->WriteInt(p);
  }
  static bool Read(const Message* m, void** iter, param_type* r) {
    return m->ReadInt(iter, r);
  }
  static void Log(const param_type& p, std::string* l);
};

template <>
struct ParamTraits<unsigned int> {
  typedef unsigned int param_type;
  static void Write(Message* m, const param_type& p) {
    m->WriteInt(p);
  }
  static bool Read(const Message* m, void** iter, param_type* r) {
    return m->ReadInt(iter, reinterpret_cast<int*>(r));
  }
  static void Log(const param_type& p, std::string* l);
};

template <>
struct ParamTraits<long> {
  typedef long param_type;
  static void Write(Message* m, const param_type& p) {
    m->WriteLong(p);
  }
  static bool Read(const Message* m, void** iter, param_type* r) {
    return m->ReadLong(iter, r);
  }
  static void Log(const param_type& p, std::string* l);
};

template <>
struct ParamTraits<unsigned long> {
  typedef unsigned long param_type;
  static void Write(Message* m, const param_type& p) {
    m->WriteLong(p);
  }
  static bool Read(const Message* m, void** iter, param_type* r) {
    return m->ReadLong(iter, reinterpret_cast<long*>(r));
  }
  static void Log(const param_type& p, std::string* l);
};

template <>
struct ParamTraits<long long> {
  typedef long long param_type;
  static void Write(Message* m, const param_type& p) {
    m->WriteInt64(static_cast<int64>(p));
  }
  static bool Read(const Message* m, void** iter, param_type* r) {
    return m->ReadInt64(iter, reinterpret_cast<int64*>(r));
  }
  static void Log(const param_type& p, std::string* l);
};

template <>
struct ParamTraits<unsigned long long> {
  typedef unsigned long long param_type;
  static void Write(Message* m, const param_type& p) {
    m->WriteInt64(p);
  }
  static bool Read(const Message* m, void** iter, param_type* r) {
    return m->ReadInt64(iter, reinterpret_cast<int64*>(r));
  }
  static void Log(const param_type& p, std::string* l);
};

template <>
struct ParamTraits<unsigned short> {
  typedef unsigned short param_type;
  static void Write(Message* m, const param_type& p);
  static bool Read(const Message* m, void** iter, param_type* r);
  static void Log(const param_type& p, std::string* l);
};

// Note that the IPC layer doesn't sanitize NaNs and +/- INF values.  Clients
// should be sure to check the sanity of these values after receiving them over
// IPC.
template <>
struct ParamTraits<float> {
  typedef float param_type;
  static void Write(Message* m, const param_type& p) {
    m->WriteData(reinterpret_cast<const char*>(&p), sizeof(param_type));
  }
  static bool Read(const Message* m, void** iter, param_type* r) {
    const char *data;
    int data_size;
    if (!m->ReadData(iter, &data, &data_size) ||
        data_size != sizeof(param_type)) {
      NOTREACHED();
      return false;
    }
    memcpy(r, data, sizeof(param_type));
    return true;
  }
  static void Log(const param_type& p, std::string* l) {
    l->append(StringPrintf("%e", p));
  }
};

template <>
struct ParamTraits<double> {
  typedef double param_type;
  static void Write(Message* m, const param_type& p) {
    m->WriteData(reinterpret_cast<const char*>(&p), sizeof(param_type));
  }
  static bool Read(const Message* m, void** iter, param_type* r) {
    const char *data;
    int data_size;
    if (!m->ReadData(iter, &data, &data_size) ||
        data_size != sizeof(param_type)) {
      NOTREACHED();
      return false;
    }
    memcpy(r, data, sizeof(param_type));
    return true;
  }
  static void Log(const param_type& p, std::string* l) {
    l->append(StringPrintf("%e", p));
  }
};

template <>
struct ParamTraits<base::Time> {
  typedef base::Time param_type;
  static void Write(Message* m, const param_type& p);
  static bool Read(const Message* m, void** iter, param_type* r);
  static void Log(const param_type& p, std::string* l);
};

template <>
struct ParamTraits<base::TimeDelta> {
  typedef base::TimeDelta param_type;
  static void Write(Message* m, const param_type& p);
  static bool Read(const Message* m, void** iter, param_type* r);
  static void Log(const param_type& p, std::string* l);
};

#if defined(OS_WIN)
template <>
struct ParamTraits<LOGFONT> {
  typedef LOGFONT param_type;
  static void Write(Message* m, const param_type& p) {
    m->WriteData(reinterpret_cast<const char*>(&p), sizeof(LOGFONT));
  }
  static bool Read(const Message* m, void** iter, param_type* r) {
    const char *data;
    int data_size = 0;
    bool result = m->ReadData(iter, &data, &data_size);
    if (result && data_size == sizeof(LOGFONT)) {
      memcpy(r, data, sizeof(LOGFONT));
    } else {
      result = false;
      NOTREACHED();
    }

    return result;
  }
  static void Log(const param_type& p, std::string* l) {
    l->append(StringPrintf("<LOGFONT>"));
  }
};

template <>
struct ParamTraits<MSG> {
  typedef MSG param_type;
  static void Write(Message* m, const param_type& p) {
    m->WriteData(reinterpret_cast<const char*>(&p), sizeof(MSG));
  }
  static bool Read(const Message* m, void** iter, param_type* r) {
    const char *data;
    int data_size = 0;
    bool result = m->ReadData(iter, &data, &data_size);
    if (result && data_size == sizeof(MSG)) {
      memcpy(r, data, sizeof(MSG));
    } else {
      result = false;
      NOTREACHED();
    }

    return result;
  }
  static void Log(const param_type& p, std::string* l) {
    l->append("<MSG>");
  }
};
#endif  // defined(OS_WIN)

template <>
struct ParamTraits<DictionaryValue> {
  typedef DictionaryValue param_type;
  static void Write(Message* m, const param_type& p);
  static bool Read(const Message* m, void** iter, param_type* r);
  static void Log(const param_type& p, std::string* l);
};

template <>
struct ParamTraits<ListValue> {
  typedef ListValue param_type;
  static void Write(Message* m, const param_type& p);
  static bool Read(const Message* m, void** iter, param_type* r);
  static void Log(const param_type& p, std::string* l);
};

template <>
struct ParamTraits<std::string> {
  typedef std::string param_type;
  static void Write(Message* m, const param_type& p) {
    m->WriteString(p);
  }
  static bool Read(const Message* m, void** iter, param_type* r) {
    return m->ReadString(iter, r);
  }
  static void Log(const param_type& p, std::string* l) {
    l->append(p);
  }
};

template<typename CharType>
static void LogBytes(const std::vector<CharType>& data, std::string* out) {
#if defined(OS_WIN)
  // Windows has a GUI for logging, which can handle arbitrary binary data.
  for (size_t i = 0; i < data.size(); ++i)
    out->push_back(data[i]);
#else
  // On POSIX, we log to stdout, which we assume can display ASCII.
  static const size_t kMaxBytesToLog = 100;
  for (size_t i = 0; i < std::min(data.size(), kMaxBytesToLog); ++i) {
    if (isprint(data[i]))
      out->push_back(data[i]);
    else
      out->append(StringPrintf("[%02X]", static_cast<unsigned char>(data[i])));
  }
  if (data.size() > kMaxBytesToLog) {
    out->append(
        StringPrintf(" and %u more bytes",
                     static_cast<unsigned>(data.size() - kMaxBytesToLog)));
  }
#endif
}

template <>
struct ParamTraits<std::vector<unsigned char> > {
  typedef std::vector<unsigned char> param_type;
  static void Write(Message* m, const param_type& p) {
    if (p.size() == 0) {
      m->WriteData(NULL, 0);
    } else {
      m->WriteData(reinterpret_cast<const char*>(&p.front()),
                   static_cast<int>(p.size()));
    }
  }
  static bool Read(const Message* m, void** iter, param_type* r) {
    const char *data;
    int data_size = 0;
    if (!m->ReadData(iter, &data, &data_size) || data_size < 0)
      return false;
    r->resize(data_size);
    if (data_size)
      memcpy(&r->front(), data, data_size);
    return true;
  }
  static void Log(const param_type& p, std::string* l) {
    LogBytes(p, l);
  }
};

template <>
struct ParamTraits<std::vector<char> > {
  typedef std::vector<char> param_type;
  static void Write(Message* m, const param_type& p) {
    if (p.size() == 0) {
      m->WriteData(NULL, 0);
    } else {
      m->WriteData(&p.front(), static_cast<int>(p.size()));
    }
  }
  static bool Read(const Message* m, void** iter, param_type* r) {
    const char *data;
    int data_size = 0;
    if (!m->ReadData(iter, &data, &data_size) || data_size < 0)
      return false;
    r->resize(data_size);
    if (data_size)
      memcpy(&r->front(), data, data_size);
    return true;
  }
  static void Log(const param_type& p, std::string* l) {
    LogBytes(p, l);
  }
};

template <class P>
struct ParamTraits<std::vector<P> > {
  typedef std::vector<P> param_type;
  static void Write(Message* m, const param_type& p) {
    WriteParam(m, static_cast<int>(p.size()));
    for (size_t i = 0; i < p.size(); i++)
      WriteParam(m, p[i]);
  }
  static bool Read(const Message* m, void** iter, param_type* r) {
    int size;
    // ReadLength() checks for < 0 itself.
    if (!m->ReadLength(iter, &size))
      return false;
    // Resizing beforehand is not safe, see BUG 1006367 for details.
    if (INT_MAX / sizeof(P) <= static_cast<size_t>(size))
      return false;
    r->resize(size);
    for (int i = 0; i < size; i++) {
      if (!ReadParam(m, iter, &(*r)[i]))
        return false;
    }
    return true;
  }
  static void Log(const param_type& p, std::string* l) {
    for (size_t i = 0; i < p.size(); ++i) {
      if (i != 0)
        l->append(" ");
      LogParam((p[i]), l);
    }
  }
};

template <class P>
struct ParamTraits<std::set<P> > {
  typedef std::set<P> param_type;
  static void Write(Message* m, const param_type& p) {
    WriteParam(m, static_cast<int>(p.size()));
    typename param_type::const_iterator iter;
    for (iter = p.begin(); iter != p.end(); ++iter)
      WriteParam(m, *iter);
  }
  static bool Read(const Message* m, void** iter, param_type* r) {
    int size;
    if (!m->ReadLength(iter, &size))
      return false;
    for (int i = 0; i < size; ++i) {
      P item;
      if (!ReadParam(m, iter, &item))
        return false;
      r->insert(item);
    }
    return true;
  }
  static void Log(const param_type& p, std::string* l) {
    l->append("<std::set>");
  }
};


template <class K, class V>
struct ParamTraits<std::map<K, V> > {
  typedef std::map<K, V> param_type;
  static void Write(Message* m, const param_type& p) {
    WriteParam(m, static_cast<int>(p.size()));
    typename param_type::const_iterator iter;
    for (iter = p.begin(); iter != p.end(); ++iter) {
      WriteParam(m, iter->first);
      WriteParam(m, iter->second);
    }
  }
  static bool Read(const Message* m, void** iter, param_type* r) {
    int size;
    if (!ReadParam(m, iter, &size) || size < 0)
      return false;
    for (int i = 0; i < size; ++i) {
      K k;
      if (!ReadParam(m, iter, &k))
        return false;
      V& value = (*r)[k];
      if (!ReadParam(m, iter, &value))
        return false;
    }
    return true;
  }
  static void Log(const param_type& p, std::string* l) {
    l->append("<std::map>");
  }
};


template <>
struct ParamTraits<std::wstring> {
  typedef std::wstring param_type;
  static void Write(Message* m, const param_type& p) {
    m->WriteWString(p);
  }
  static bool Read(const Message* m, void** iter, param_type* r) {
    return m->ReadWString(iter, r);
  }
  static void Log(const param_type& p, std::string* l);
};

template <class A, class B>
struct ParamTraits<std::pair<A, B> > {
  typedef std::pair<A, B> param_type;
  static void Write(Message* m, const param_type& p) {
    WriteParam(m, p.first);
    WriteParam(m, p.second);
  }
  static bool Read(const Message* m, void** iter, param_type* r) {
    return ReadParam(m, iter, &r->first) && ReadParam(m, iter, &r->second);
  }
  static void Log(const param_type& p, std::string* l) {
    l->append("(");
    LogParam(p.first, l);
    l->append(", ");
    LogParam(p.second, l);
    l->append(")");
  }
};

template <>
struct ParamTraits<NullableString16> {
  typedef NullableString16 param_type;
  static void Write(Message* m, const param_type& p);
  static bool Read(const Message* m, void** iter, param_type* r);
  static void Log(const param_type& p, std::string* l);
};

// If WCHAR_T_IS_UTF16 is defined, then string16 is a std::wstring so we don't
// need this trait.
#if !defined(WCHAR_T_IS_UTF16)
template <>
struct ParamTraits<string16> {
  typedef string16 param_type;
  static void Write(Message* m, const param_type& p) {
    m->WriteString16(p);
  }
  static bool Read(const Message* m, void** iter, param_type* r) {
    return m->ReadString16(iter, r);
  }
  static void Log(const param_type& p, std::string* l);
};
#endif

// and, a few more useful types...
#if defined(OS_WIN)
template <>
struct ParamTraits<HANDLE> {
  typedef HANDLE param_type;
  static void Write(Message* m, const param_type& p) {
    // Note that HWNDs/HANDLE/HCURSOR/HACCEL etc are always 32 bits, even on 64
    // bit systems.
    m->WriteUInt32(reinterpret_cast<uint32>(p));
  }
  static bool Read(const Message* m, void** iter, param_type* r) {
    DCHECK_EQ(sizeof(param_type), sizeof(uint32));
    return m->ReadUInt32(iter, reinterpret_cast<uint32*>(r));
  }
  static void Log(const param_type& p, std::string* l) {
    l->append(StringPrintf("0x%X", p));
  }
};

template <>
struct ParamTraits<HCURSOR> {
  typedef HCURSOR param_type;
  static void Write(Message* m, const param_type& p) {
    m->WriteUInt32(reinterpret_cast<uint32>(p));
  }
  static bool Read(const Message* m, void** iter, param_type* r) {
    DCHECK_EQ(sizeof(param_type), sizeof(uint32));
    return m->ReadUInt32(iter, reinterpret_cast<uint32*>(r));
  }
  static void Log(const param_type& p, std::string* l) {
    l->append(StringPrintf("0x%X", p));
  }
};

template <>
struct ParamTraits<HACCEL> {
  typedef HACCEL param_type;
  static void Write(Message* m, const param_type& p) {
    m->WriteUInt32(reinterpret_cast<uint32>(p));
  }
  static bool Read(const Message* m, void** iter, param_type* r) {
    DCHECK_EQ(sizeof(param_type), sizeof(uint32));
    return m->ReadUInt32(iter, reinterpret_cast<uint32*>(r));
  }
};

template <>
struct ParamTraits<POINT> {
  typedef POINT param_type;
  static void Write(Message* m, const param_type& p) {
    m->WriteInt(p.x);
    m->WriteInt(p.y);
  }
  static bool Read(const Message* m, void** iter, param_type* r) {
    int x, y;
    if (!m->ReadInt(iter, &x) || !m->ReadInt(iter, &y))
      return false;
    r->x = x;
    r->y = y;
    return true;
  }
  static void Log(const param_type& p, std::string* l) {
    l->append(StringPrintf("(%d, %d)", p.x, p.y));
  }
};
#endif  // defined(OS_WIN)

template <>
struct ParamTraits<FilePath> {
  typedef FilePath param_type;
  static void Write(Message* m, const param_type& p);
  static bool Read(const Message* m, void** iter, param_type* r);
  static void Log(const param_type& p, std::string* l);
};

#if defined(OS_POSIX)
// FileDescriptors may be serialised over IPC channels on POSIX. On the
// receiving side, the FileDescriptor is a valid duplicate of the file
// descriptor which was transmitted: *it is not just a copy of the integer like
// HANDLEs on Windows*. The only exception is if the file descriptor is < 0. In
// this case, the receiving end will see a value of -1. *Zero is a valid file
// descriptor*.
//
// The received file descriptor will have the |auto_close| flag set to true. The
// code which handles the message is responsible for taking ownership of it.
// File descriptors are OS resources and must be closed when no longer needed.
//
// When sending a file descriptor, the file descriptor must be valid at the time
// of transmission. Since transmission is not synchronous, one should consider
// dup()ing any file descriptors to be transmitted and setting the |auto_close|
// flag, which causes the file descriptor to be closed after writing.
template<>
struct ParamTraits<base::FileDescriptor> {
  typedef base::FileDescriptor param_type;
  static void Write(Message* m, const param_type& p);
  static bool Read(const Message* m, void** iter, param_type* r);
  static void Log(const param_type& p, std::string* l);
};
#endif  // defined(OS_POSIX)

// A ChannelHandle is basically a platform-inspecific wrapper around the
// fact that IPC endpoints are handled specially on POSIX.  See above comments
// on FileDescriptor for more background.
template<>
struct ParamTraits<IPC::ChannelHandle> {
  typedef ChannelHandle param_type;
  static void Write(Message* m, const param_type& p);
  static bool Read(const Message* m, void** iter, param_type* r);
  static void Log(const param_type& p, std::string* l);
};

#if defined(OS_WIN)
template <>
struct ParamTraits<XFORM> {
  typedef XFORM param_type;
  static void Write(Message* m, const param_type& p) {
    m->WriteData(reinterpret_cast<const char*>(&p), sizeof(XFORM));
  }
  static bool Read(const Message* m, void** iter, param_type* r) {
    const char *data;
    int data_size = 0;
    bool result = m->ReadData(iter, &data, &data_size);
    if (result && data_size == sizeof(XFORM)) {
      memcpy(r, data, sizeof(XFORM));
    } else {
      result = false;
      NOTREACHED();
    }

    return result;
  }
  static void Log(const param_type& p, std::string* l) {
    l->append("<XFORM>");
  }
};
#endif  // defined(OS_WIN)

struct LogData {
  LogData();
  ~LogData();

  std::string channel;
  int32 routing_id;
  uint32 type;  // "User-defined" message type, from ipc_message.h.
  std::string flags;
  int64 sent;  // Time that the message was sent (i.e. at Send()).
  int64 receive;  // Time before it was dispatched (i.e. before calling
                  // OnMessageReceived).
  int64 dispatch;  // Time after it was dispatched (i.e. after calling
                   // OnMessageReceived).
  std::string message_name;
  std::string params;
};

template <>
struct ParamTraits<LogData> {
  typedef LogData param_type;
  static void Write(Message* m, const param_type& p);
  static bool Read(const Message* m, void** iter, param_type* r);
  static void Log(const param_type& p, std::string* l) {
    // Doesn't make sense to implement this!
  }
};

template <>
struct ParamTraits<Message> {
  static void Write(Message* m, const Message& p) {
    m->WriteInt(p.size());
    m->WriteData(reinterpret_cast<const char*>(p.data()), p.size());
  }
  static bool Read(const Message* m, void** iter, Message* r) {
    int size;
    if (!m->ReadInt(iter, &size))
      return false;
    const char* data;
    if (!m->ReadData(iter, &data, &size))
      return false;
    *r = Message(data, size);
    return true;
  }
  static void Log(const Message& p, std::string* l) {
    l->append("<IPC::Message>");
  }
};

template <>
struct ParamTraits<Tuple0> {
  typedef Tuple0 param_type;
  static void Write(Message* m, const param_type& p) {
  }
  static bool Read(const Message* m, void** iter, param_type* r) {
    return true;
  }
  static void Log(const param_type& p, std::string* l) {
  }
};

template <class A>
struct ParamTraits< Tuple1<A> > {
  typedef Tuple1<A> param_type;
  static void Write(Message* m, const param_type& p) {
    WriteParam(m, p.a);
  }
  static bool Read(const Message* m, void** iter, param_type* r) {
    return ReadParam(m, iter, &r->a);
  }
  static void Log(const param_type& p, std::string* l) {
    LogParam(p.a, l);
  }
};

template <class A, class B>
struct ParamTraits< Tuple2<A, B> > {
  typedef Tuple2<A, B> param_type;
  static void Write(Message* m, const param_type& p) {
    WriteParam(m, p.a);
    WriteParam(m, p.b);
  }
  static bool Read(const Message* m, void** iter, param_type* r) {
    return (ReadParam(m, iter, &r->a) &&
            ReadParam(m, iter, &r->b));
  }
  static void Log(const param_type& p, std::string* l) {
    LogParam(p.a, l);
    l->append(", ");
    LogParam(p.b, l);
  }
};

template <class A, class B, class C>
struct ParamTraits< Tuple3<A, B, C> > {
  typedef Tuple3<A, B, C> param_type;
  static void Write(Message* m, const param_type& p) {
    WriteParam(m, p.a);
    WriteParam(m, p.b);
    WriteParam(m, p.c);
  }
  static bool Read(const Message* m, void** iter, param_type* r) {
    return (ReadParam(m, iter, &r->a) &&
            ReadParam(m, iter, &r->b) &&
            ReadParam(m, iter, &r->c));
  }
  static void Log(const param_type& p, std::string* l) {
    LogParam(p.a, l);
    l->append(", ");
    LogParam(p.b, l);
    l->append(", ");
    LogParam(p.c, l);
  }
};

template <class A, class B, class C, class D>
struct ParamTraits< Tuple4<A, B, C, D> > {
  typedef Tuple4<A, B, C, D> param_type;
  static void Write(Message* m, const param_type& p) {
    WriteParam(m, p.a);
    WriteParam(m, p.b);
    WriteParam(m, p.c);
    WriteParam(m, p.d);
  }
  static bool Read(const Message* m, void** iter, param_type* r) {
    return (ReadParam(m, iter, &r->a) &&
            ReadParam(m, iter, &r->b) &&
            ReadParam(m, iter, &r->c) &&
            ReadParam(m, iter, &r->d));
  }
  static void Log(const param_type& p, std::string* l) {
    LogParam(p.a, l);
    l->append(", ");
    LogParam(p.b, l);
    l->append(", ");
    LogParam(p.c, l);
    l->append(", ");
    LogParam(p.d, l);
  }
};

template <class A, class B, class C, class D, class E>
struct ParamTraits< Tuple5<A, B, C, D, E> > {
  typedef Tuple5<A, B, C, D, E> param_type;
  static void Write(Message* m, const param_type& p) {
    WriteParam(m, p.a);
    WriteParam(m, p.b);
    WriteParam(m, p.c);
    WriteParam(m, p.d);
    WriteParam(m, p.e);
  }
  static bool Read(const Message* m, void** iter, param_type* r) {
    return (ReadParam(m, iter, &r->a) &&
            ReadParam(m, iter, &r->b) &&
            ReadParam(m, iter, &r->c) &&
            ReadParam(m, iter, &r->d) &&
            ReadParam(m, iter, &r->e));
  }
  static void Log(const param_type& p, std::string* l) {
    LogParam(p.a, l);
    l->append(", ");
    LogParam(p.b, l);
    l->append(", ");
    LogParam(p.c, l);
    l->append(", ");
    LogParam(p.d, l);
    l->append(", ");
    LogParam(p.e, l);
  }
};

//-----------------------------------------------------------------------------
// Generic message subclasses

// Used for asynchronous messages.
template <class ParamType>
class MessageWithTuple : public Message {
 public:
  typedef ParamType Param;
  typedef typename TupleTypes<ParamType>::ParamTuple RefParam;

  // The constructor and the Read() method's templated implementations are in
  // ipc_message_utils_impl.h. The subclass constructor and Log() methods call
  // the templated versions of these and make sure there are instantiations in
  // those translation units.
  MessageWithTuple(int32 routing_id, uint32 type, const RefParam& p);

  static bool Read(const Message* msg, Param* p) IPC_MSG_NOINLINE;

  // Generic dispatcher.  Should cover most cases.
  template<class T, class Method>
  static bool Dispatch(const Message* msg, T* obj, Method func) {
    Param p;
    if (Read(msg, &p)) {
      DispatchToMethod(obj, func, p);
      return true;
    }
    return false;
  }

  // The following dispatchers exist for the case where the callback function
  // needs the message as well.  They assume that "Param" is a type of Tuple
  // (except the one arg case, as there is no Tuple1).
  template<class T, typename TA>
  static bool Dispatch(const Message* msg, T* obj,
                       void (T::*func)(const Message&, TA)) {
    Param p;
    if (Read(msg, &p)) {
      (obj->*func)(*msg, p.a);
      return true;
    }
    return false;
  }

  template<class T, typename TA, typename TB>
  static bool Dispatch(const Message* msg, T* obj,
                       void (T::*func)(const Message&, TA, TB)) {
    Param p;
    if (Read(msg, &p)) {
      (obj->*func)(*msg, p.a, p.b);
      return true;
    }
    return false;
  }

  template<class T, typename TA, typename TB, typename TC>
  static bool Dispatch(const Message* msg, T* obj,
                       void (T::*func)(const Message&, TA, TB, TC)) {
    Param p;
    if (Read(msg, &p)) {
      (obj->*func)(*msg, p.a, p.b, p.c);
      return true;
    }
    return false;
  }

  template<class T, typename TA, typename TB, typename TC, typename TD>
  static bool Dispatch(const Message* msg, T* obj,
                       void (T::*func)(const Message&, TA, TB, TC, TD)) {
    Param p;
    if (Read(msg, &p)) {
      (obj->*func)(*msg, p.a, p.b, p.c, p.d);
      return true;
    }
    return false;
  }

  template<class T, typename TA, typename TB, typename TC, typename TD,
           typename TE>
  static bool Dispatch(const Message* msg, T* obj,
                       void (T::*func)(const Message&, TA, TB, TC, TD, TE)) {
    Param p;
    if (Read(msg, &p)) {
      (obj->*func)(*msg, p.a, p.b, p.c, p.d, p.e);
      return true;
    }
    return false;
  }

  // Functions used to do manual unpacking.  Only used by the automation code,
  // these should go away once that code uses SyncChannel.
  template<typename TA, typename TB>
  static bool Read(const IPC::Message* msg, TA* a, TB* b) {
    ParamType params;
    if (!Read(msg, &params))
      return false;
    *a = params.a;
    *b = params.b;
    return true;
  }

  template<typename TA, typename TB, typename TC>
  static bool Read(const IPC::Message* msg, TA* a, TB* b, TC* c) {
    ParamType params;
    if (!Read(msg, &params))
      return false;
    *a = params.a;
    *b = params.b;
    *c = params.c;
    return true;
  }

  template<typename TA, typename TB, typename TC, typename TD>
  static bool Read(const IPC::Message* msg, TA* a, TB* b, TC* c, TD* d) {
    ParamType params;
    if (!Read(msg, &params))
      return false;
    *a = params.a;
    *b = params.b;
    *c = params.c;
    *d = params.d;
    return true;
  }

  template<typename TA, typename TB, typename TC, typename TD, typename TE>
  static bool Read(const IPC::Message* msg, TA* a, TB* b, TC* c, TD* d, TE* e) {
    ParamType params;
    if (!Read(msg, &params))
      return false;
    *a = params.a;
    *b = params.b;
    *c = params.c;
    *d = params.d;
    *e = params.e;
    return true;
  }
};

// defined in ipc_logging.cc
void GenerateLogData(const std::string& channel, const Message& message,
                     LogData* data);


#if defined(IPC_MESSAGE_LOG_ENABLED)
inline void AddOutputParamsToLog(const Message* msg, std::string* l) {
  const std::string& output_params = msg->output_params();
  if (!l->empty() && !output_params.empty())
    l->append(", ");

  l->append(output_params);
}

template <class ReplyParamType>
inline void LogReplyParamsToMessage(const ReplyParamType& reply_params,
                                    const Message* msg) {
  if (msg->received_time() != 0) {
    std::string output_params;
    LogParam(reply_params, &output_params);
    msg->set_output_params(output_params);
  }
}

inline void ConnectMessageAndReply(const Message* msg, Message* reply) {
  if (msg->sent_time()) {
    // Don't log the sync message after dispatch, as we don't have the
    // output parameters at that point.  Instead, save its data and log it
    // with the outgoing reply message when it's sent.
    LogData* data = new LogData;
    GenerateLogData("", *msg, data);
    msg->set_dont_log();
    reply->set_sync_log_data(data);
  }
}
#else
inline void AddOutputParamsToLog(const Message* msg, std::string* l) {}

template <class ReplyParamType>
inline void LogReplyParamsToMessage(const ReplyParamType& reply_params,
                                    const Message* msg) {}

inline void ConnectMessageAndReply(const Message* msg, Message* reply) {}
#endif

// This class assumes that its template argument is a RefTuple (a Tuple with
// reference elements). This would go into ipc_message_utils_impl.h, but it is
// also used by chrome_frame.
template <class RefTuple>
class ParamDeserializer : public MessageReplyDeserializer {
 public:
  explicit ParamDeserializer(const RefTuple& out) : out_(out) { }

  bool SerializeOutputParameters(const IPC::Message& msg, void* iter) {
    return ReadParam(&msg, &iter, &out_);
  }

  RefTuple out_;
};

// Used for synchronous messages.
template <class SendParamType, class ReplyParamType>
class MessageWithReply : public SyncMessage {
 public:
  typedef SendParamType SendParam;
  typedef typename TupleTypes<SendParam>::ParamTuple RefSendParam;
  typedef ReplyParamType ReplyParam;

  MessageWithReply(int32 routing_id, uint32 type,
                   const RefSendParam& send, const ReplyParam& reply);
  static bool ReadSendParam(const Message* msg, SendParam* p) IPC_MSG_NOINLINE;
  static bool ReadReplyParam(
      const Message* msg,
      typename TupleTypes<ReplyParam>::ValueTuple* p) IPC_MSG_NOINLINE;

  template<class T, class Method>
  static bool Dispatch(const Message* msg, T* obj, Method func) {
    SendParam send_params;
    Message* reply = GenerateReply(msg);
    bool error;
    if (ReadSendParam(msg, &send_params)) {
      typename TupleTypes<ReplyParam>::ValueTuple reply_params;
      DispatchToMethod(obj, func, send_params, &reply_params);
      WriteParam(reply, reply_params);
      error = false;
      LogReplyParamsToMessage(reply_params, msg);
    } else {
      NOTREACHED() << "Error deserializing message " << msg->type();
      reply->set_reply_error();
      error = true;
    }

    obj->Send(reply);
    return !error;
  }

  template<class T, class Method>
  static bool DispatchDelayReply(const Message* msg, T* obj, Method func) {
    SendParam send_params;
    Message* reply = GenerateReply(msg);
    bool error;
    if (ReadSendParam(msg, &send_params)) {
      Tuple1<Message&> t = MakeRefTuple(*reply);
      ConnectMessageAndReply(msg, reply);
      DispatchToMethod(obj, func, send_params, &t);
      error = false;
    } else {
      NOTREACHED() << "Error deserializing message " << msg->type();
      reply->set_reply_error();
      obj->Send(reply);
      error = true;
    }
    return !error;
  }

  template<typename TA>
  static void WriteReplyParams(Message* reply, TA a) {
    ReplyParam p(a);
    WriteParam(reply, p);
  }

  template<typename TA, typename TB>
  static void WriteReplyParams(Message* reply, TA a, TB b) {
    ReplyParam p(a, b);
    WriteParam(reply, p);
  }

  template<typename TA, typename TB, typename TC>
  static void WriteReplyParams(Message* reply, TA a, TB b, TC c) {
    ReplyParam p(a, b, c);
    WriteParam(reply, p);
  }

  template<typename TA, typename TB, typename TC, typename TD>
  static void WriteReplyParams(Message* reply, TA a, TB b, TC c, TD d) {
    ReplyParam p(a, b, c, d);
    WriteParam(reply, p);
  }

  template<typename TA, typename TB, typename TC, typename TD, typename TE>
  static void WriteReplyParams(Message* reply, TA a, TB b, TC c, TD d, TE e) {
    ReplyParam p(a, b, c, d, e);
    WriteParam(reply, p);
  }
};

//-----------------------------------------------------------------------------

}  // namespace IPC

#endif  // IPC_IPC_MESSAGE_UTILS_H_