1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
|
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ipc/ipc_perftest_support.h"
#include <algorithm>
#include <string>
#include "base/logging.h"
#include "base/macros.h"
#include "base/memory/scoped_ptr.h"
#include "base/pickle.h"
#include "base/strings/stringprintf.h"
#include "base/test/perf_time_logger.h"
#include "base/test/test_io_thread.h"
#include "base/threading/thread.h"
#include "base/time/time.h"
#include "build/build_config.h"
#include "ipc/ipc_channel.h"
#include "ipc/ipc_channel_proxy.h"
#include "ipc/ipc_descriptors.h"
#include "ipc/ipc_message_utils.h"
#include "ipc/ipc_sender.h"
namespace IPC {
namespace test {
// Avoid core 0 due to conflicts with Intel's Power Gadget.
// Setting thread affinity will fail harmlessly on single/dual core machines.
const int kSharedCore = 2;
// This class simply collects stats about abstract "events" (each of which has a
// start time and an end time).
class EventTimeTracker {
public:
explicit EventTimeTracker(const char* name)
: name_(name),
count_(0) {
}
void AddEvent(const base::TimeTicks& start, const base::TimeTicks& end) {
DCHECK(end >= start);
count_++;
base::TimeDelta duration = end - start;
total_duration_ += duration;
max_duration_ = std::max(max_duration_, duration);
}
void ShowResults() const {
VLOG(1) << name_ << " count: " << count_;
VLOG(1) << name_ << " total duration: "
<< total_duration_.InMillisecondsF() << " ms";
VLOG(1) << name_ << " average duration: "
<< (total_duration_.InMillisecondsF() / static_cast<double>(count_))
<< " ms";
VLOG(1) << name_ << " maximum duration: "
<< max_duration_.InMillisecondsF() << " ms";
}
void Reset() {
count_ = 0;
total_duration_ = base::TimeDelta();
max_duration_ = base::TimeDelta();
}
private:
const std::string name_;
uint64_t count_;
base::TimeDelta total_duration_;
base::TimeDelta max_duration_;
DISALLOW_COPY_AND_ASSIGN(EventTimeTracker);
};
// This channel listener just replies to all messages with the exact same
// message. It assumes each message has one string parameter. When the string
// "quit" is sent, it will exit.
class ChannelReflectorListener : public Listener {
public:
ChannelReflectorListener()
: channel_(NULL),
latency_tracker_("Client messages") {
VLOG(1) << "Client listener up";
}
~ChannelReflectorListener() override {
VLOG(1) << "Client listener down";
latency_tracker_.ShowResults();
}
void Init(Channel* channel) {
DCHECK(!channel_);
channel_ = channel;
}
bool OnMessageReceived(const Message& message) override {
CHECK(channel_);
base::PickleIterator iter(message);
int64_t time_internal;
EXPECT_TRUE(iter.ReadInt64(&time_internal));
int msgid;
EXPECT_TRUE(iter.ReadInt(&msgid));
base::StringPiece payload;
EXPECT_TRUE(iter.ReadStringPiece(&payload));
// Include message deserialization in latency.
base::TimeTicks now = base::TimeTicks::Now();
if (payload == "hello") {
latency_tracker_.Reset();
} else if (payload == "quit") {
latency_tracker_.ShowResults();
base::MessageLoop::current()->QuitWhenIdle();
return true;
} else {
// Don't track hello and quit messages.
latency_tracker_.AddEvent(
base::TimeTicks::FromInternalValue(time_internal), now);
}
Message* msg = new Message(0, 2, Message::PRIORITY_NORMAL);
msg->WriteInt64(base::TimeTicks::Now().ToInternalValue());
msg->WriteInt(msgid);
msg->WriteString(payload);
channel_->Send(msg);
return true;
}
private:
Channel* channel_;
EventTimeTracker latency_tracker_;
};
class PerformanceChannelListener : public Listener {
public:
explicit PerformanceChannelListener(const std::string& label)
: label_(label),
sender_(NULL),
msg_count_(0),
msg_size_(0),
count_down_(0),
latency_tracker_("Server messages") {
VLOG(1) << "Server listener up";
}
~PerformanceChannelListener() override {
VLOG(1) << "Server listener down";
}
void Init(Sender* sender) {
DCHECK(!sender_);
sender_ = sender;
}
// Call this before running the message loop.
void SetTestParams(int msg_count, size_t msg_size) {
DCHECK_EQ(0, count_down_);
msg_count_ = msg_count;
msg_size_ = msg_size;
count_down_ = msg_count_;
payload_ = std::string(msg_size_, 'a');
}
bool OnMessageReceived(const Message& message) override {
CHECK(sender_);
base::PickleIterator iter(message);
int64_t time_internal;
EXPECT_TRUE(iter.ReadInt64(&time_internal));
int msgid;
EXPECT_TRUE(iter.ReadInt(&msgid));
std::string reflected_payload;
EXPECT_TRUE(iter.ReadString(&reflected_payload));
// Include message deserialization in latency.
base::TimeTicks now = base::TimeTicks::Now();
if (reflected_payload == "hello") {
// Start timing on hello.
latency_tracker_.Reset();
DCHECK(!perf_logger_.get());
std::string test_name =
base::StringPrintf("IPC_%s_Perf_%dx_%u",
label_.c_str(),
msg_count_,
static_cast<unsigned>(msg_size_));
perf_logger_.reset(new base::PerfTimeLogger(test_name.c_str()));
} else {
DCHECK_EQ(payload_.size(), reflected_payload.size());
latency_tracker_.AddEvent(
base::TimeTicks::FromInternalValue(time_internal), now);
CHECK(count_down_ > 0);
count_down_--;
if (count_down_ == 0) {
perf_logger_.reset(); // Stop the perf timer now.
latency_tracker_.ShowResults();
base::MessageLoop::current()->QuitWhenIdle();
return true;
}
}
Message* msg = new Message(0, 2, Message::PRIORITY_NORMAL);
msg->WriteInt64(base::TimeTicks::Now().ToInternalValue());
msg->WriteInt(count_down_);
msg->WriteString(payload_);
sender_->Send(msg);
return true;
}
private:
std::string label_;
Sender* sender_;
int msg_count_;
size_t msg_size_;
int count_down_;
std::string payload_;
EventTimeTracker latency_tracker_;
scoped_ptr<base::PerfTimeLogger> perf_logger_;
};
std::vector<PingPongTestParams>
IPCChannelPerfTestBase::GetDefaultTestParams() {
// Test several sizes. We use 12^N for message size, and limit the message
// count to keep the test duration reasonable.
std::vector<PingPongTestParams> list;
list.push_back(PingPongTestParams(12, 50000));
list.push_back(PingPongTestParams(144, 50000));
list.push_back(PingPongTestParams(1728, 50000));
list.push_back(PingPongTestParams(20736, 12000));
list.push_back(PingPongTestParams(248832, 1000));
return list;
}
void IPCChannelPerfTestBase::RunTestChannelPingPong(
const std::vector<PingPongTestParams>& params) {
Init("PerformanceClient");
// Set up IPC channel and start client.
PerformanceChannelListener listener("Channel");
CreateChannel(&listener);
listener.Init(channel());
ASSERT_TRUE(ConnectChannel());
ASSERT_TRUE(StartClient());
LockThreadAffinity thread_locker(kSharedCore);
for (size_t i = 0; i < params.size(); i++) {
listener.SetTestParams(params[i].message_count(),
params[i].message_size());
// This initial message will kick-start the ping-pong of messages.
Message* message =
new Message(0, 2, Message::PRIORITY_NORMAL);
message->WriteInt64(base::TimeTicks::Now().ToInternalValue());
message->WriteInt(-1);
message->WriteString("hello");
sender()->Send(message);
// Run message loop.
base::MessageLoop::current()->Run();
}
// Send quit message.
Message* message = new Message(0, 2, Message::PRIORITY_NORMAL);
message->WriteInt64(base::TimeTicks::Now().ToInternalValue());
message->WriteInt(-1);
message->WriteString("quit");
sender()->Send(message);
EXPECT_TRUE(WaitForClientShutdown());
DestroyChannel();
}
void IPCChannelPerfTestBase::RunTestChannelProxyPingPong(
const std::vector<PingPongTestParams>& params) {
InitWithCustomMessageLoop("PerformanceClient",
make_scoped_ptr(new base::MessageLoop()));
base::TestIOThread io_thread(base::TestIOThread::kAutoStart);
// Set up IPC channel and start client.
PerformanceChannelListener listener("ChannelProxy");
CreateChannelProxy(&listener, io_thread.task_runner());
listener.Init(channel_proxy());
ASSERT_TRUE(StartClient());
LockThreadAffinity thread_locker(kSharedCore);
for (size_t i = 0; i < params.size(); i++) {
listener.SetTestParams(params[i].message_count(),
params[i].message_size());
// This initial message will kick-start the ping-pong of messages.
Message* message =
new Message(0, 2, Message::PRIORITY_NORMAL);
message->WriteInt64(base::TimeTicks::Now().ToInternalValue());
message->WriteInt(-1);
message->WriteString("hello");
sender()->Send(message);
// Run message loop.
base::MessageLoop::current()->Run();
}
// Send quit message.
Message* message = new Message(0, 2, Message::PRIORITY_NORMAL);
message->WriteInt64(base::TimeTicks::Now().ToInternalValue());
message->WriteInt(-1);
message->WriteString("quit");
sender()->Send(message);
EXPECT_TRUE(WaitForClientShutdown());
DestroyChannelProxy();
}
PingPongTestClient::PingPongTestClient()
: listener_(new ChannelReflectorListener()) {
}
PingPongTestClient::~PingPongTestClient() {
}
scoped_ptr<Channel> PingPongTestClient::CreateChannel(
Listener* listener) {
return Channel::CreateClient(IPCTestBase::GetChannelName("PerformanceClient"),
listener);
}
int PingPongTestClient::RunMain() {
LockThreadAffinity thread_locker(kSharedCore);
scoped_ptr<Channel> channel = CreateChannel(listener_.get());
listener_->Init(channel.get());
CHECK(channel->Connect());
base::MessageLoop::current()->Run();
return 0;
}
scoped_refptr<base::TaskRunner> PingPongTestClient::task_runner() {
return main_message_loop_.task_runner();
}
LockThreadAffinity::LockThreadAffinity(int cpu_number)
: affinity_set_ok_(false) {
#if defined(OS_WIN)
const DWORD_PTR thread_mask = 1 << cpu_number;
old_affinity_ = SetThreadAffinityMask(GetCurrentThread(), thread_mask);
affinity_set_ok_ = old_affinity_ != 0;
#elif defined(OS_LINUX)
cpu_set_t cpuset;
CPU_ZERO(&cpuset);
CPU_SET(cpu_number, &cpuset);
auto get_result = sched_getaffinity(0, sizeof(old_cpuset_), &old_cpuset_);
DCHECK_EQ(0, get_result);
auto set_result = sched_setaffinity(0, sizeof(cpuset), &cpuset);
// Check for get_result failure, even though it should always succeed.
affinity_set_ok_ = (set_result == 0) && (get_result == 0);
#endif
if (!affinity_set_ok_)
LOG(WARNING) << "Failed to set thread affinity to CPU " << cpu_number;
}
LockThreadAffinity::~LockThreadAffinity() {
if (!affinity_set_ok_)
return;
#if defined(OS_WIN)
auto set_result = SetThreadAffinityMask(GetCurrentThread(), old_affinity_);
DCHECK_NE(0u, set_result);
#elif defined(OS_LINUX)
auto set_result = sched_setaffinity(0, sizeof(old_cpuset_), &old_cpuset_);
DCHECK_EQ(0, set_result);
#endif
}
} // namespace test
} // namespace IPC
|