1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
|
// Copyright (c) 2010 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/audio/mac/audio_output_mac.h"
#include "base/basictypes.h"
#include "base/logging.h"
#include "media/audio/audio_util.h"
#include "media/audio/mac/audio_manager_mac.h"
namespace {
// A custom data structure to store information an AudioQueue buffer.
struct AudioQueueUserData {
AudioQueueUserData() : empty_buffer(false) {}
bool empty_buffer;
};
} // namespace
// Overview of operation:
// 1) An object of PCMQueueOutAudioOutputStream is created by the AudioManager
// factory: audio_man->MakeAudioStream(). This just fills some structure.
// 2) Next some thread will call Open(), at that point the underliying OS
// queue is created and the audio buffers allocated.
// 3) Then some thread will call Start(source) At this point the source will be
// called to fill the initial buffers in the context of that same thread.
// Then the OS queue is started which will create its own thread which
// periodically will call the source for more data as buffers are being
// consumed.
// 4) At some point some thread will call Stop(), which we handle by directly
// stoping the OS queue.
// 5) One more callback to the source could be delivered in in the context of
// the queue's own thread. Data, if any will be discared.
// 6) The same thread that called stop will call Close() where we cleanup
// and notifiy the audio manager, which likley will destroy this object.
#if !defined(MAC_OS_X_VERSION_10_6) || \
MAC_OS_X_VERSION_MAX_ALLOWED < MAC_OS_X_VERSION_10_6
enum {
kAudioQueueErr_EnqueueDuringReset = -66632
};
#endif
PCMQueueOutAudioOutputStream::PCMQueueOutAudioOutputStream(
AudioManagerMac* manager, int channels, int sampling_rate,
char bits_per_sample)
: format_(),
audio_queue_(NULL),
buffer_(),
source_(NULL),
manager_(manager),
silence_bytes_(0),
volume_(1),
pending_bytes_(0) {
// We must have a manager.
DCHECK(manager_);
// A frame is one sample across all channels. In interleaved audio the per
// frame fields identify the set of n |channels|. In uncompressed audio, a
// packet is always one frame.
format_.mSampleRate = sampling_rate;
format_.mFormatID = kAudioFormatLinearPCM;
format_.mFormatFlags = kLinearPCMFormatFlagIsPacked |
kLinearPCMFormatFlagIsSignedInteger;
format_.mBitsPerChannel = bits_per_sample;
format_.mChannelsPerFrame = channels;
format_.mFramesPerPacket = 1;
format_.mBytesPerPacket = (format_.mBitsPerChannel * channels) / 8;
format_.mBytesPerFrame = format_.mBytesPerPacket;
// Silence buffer has a duration of 6ms to simulate the behavior of Windows.
// This value is choosen by experiments and macs cannot keep up with
// anything less than 6ms.
silence_bytes_ = format_.mBytesPerFrame * sampling_rate * 6 / 1000;
}
PCMQueueOutAudioOutputStream::~PCMQueueOutAudioOutputStream() {
}
void PCMQueueOutAudioOutputStream::HandleError(OSStatus err) {
// source_ can be set to NULL from another thread. We need to cache its
// pointer while we operate here. Note that does not mean that the source
// has been destroyed.
AudioSourceCallback* source = source_;
if (source)
source->OnError(this, static_cast<int>(err));
NOTREACHED() << "error code " << err;
}
bool PCMQueueOutAudioOutputStream::Open(uint32 packet_size) {
if (0 == packet_size) {
// TODO(cpu) : Impelement default buffer computation.
return false;
}
// Create the actual queue object and let the OS use its own thread to
// run its CFRunLoop.
OSStatus err = AudioQueueNewOutput(&format_, RenderCallback, this, NULL,
kCFRunLoopCommonModes, 0, &audio_queue_);
if (err != noErr) {
HandleError(err);
return false;
}
// Allocate the hardware-managed buffers.
for (uint32 ix = 0; ix != kNumBuffers; ++ix) {
err = AudioQueueAllocateBuffer(audio_queue_, packet_size, &buffer_[ix]);
if (err != noErr) {
HandleError(err);
return false;
}
// Allocate memory for user data.
buffer_[ix]->mUserData = new AudioQueueUserData();
}
// Set initial volume here.
err = AudioQueueSetParameter(audio_queue_, kAudioQueueParam_Volume, 1.0);
if (err != noErr) {
HandleError(err);
return false;
}
return true;
}
void PCMQueueOutAudioOutputStream::Close() {
// It is valid to call Close() before calling Open(), thus audio_queue_
// might be NULL.
if (audio_queue_) {
OSStatus err = 0;
for (uint32 ix = 0; ix != kNumBuffers; ++ix) {
if (buffer_[ix]) {
// Free user data.
delete static_cast<AudioQueueUserData*>(buffer_[ix]->mUserData);
// Free AudioQueue buffer.
err = AudioQueueFreeBuffer(audio_queue_, buffer_[ix]);
if (err != noErr) {
HandleError(err);
break;
}
}
}
err = AudioQueueDispose(audio_queue_, true);
if (err != noErr)
HandleError(err);
}
// Inform the audio manager that we have been closed. This can cause our
// destruction.
manager_->ReleaseOutputStream(this);
}
void PCMQueueOutAudioOutputStream::Stop() {
// We request a synchronous stop, so the next call can take some time. In
// the windows implementation we block here as well.
source_ = NULL;
// We set the source to null to signal to the data queueing thread it can stop
// queueing data, however at most one callback might still be in flight which
// could attempt to enqueue right after the next call. Rather that trying to
// use a lock we rely on the internal Mac queue lock so the enqueue might
// succeed or might fail but it won't crash or leave the queue itself in an
// inconsistent state.
OSStatus err = AudioQueueStop(audio_queue_, true);
if (err != noErr)
HandleError(err);
}
void PCMQueueOutAudioOutputStream::SetVolume(double volume) {
if (!audio_queue_)
return;
volume_ = static_cast<float>(volume);
OSStatus err = AudioQueueSetParameter(audio_queue_,
kAudioQueueParam_Volume,
volume);
if (err != noErr) {
HandleError(err);
}
}
void PCMQueueOutAudioOutputStream::GetVolume(double* volume) {
if (!audio_queue_)
return;
*volume = volume_;
}
// Reorder PCM from AAC layout to Core Audio layout.
// TODO(fbarchard): Switch layout when ffmpeg is updated.
namespace {
template<class Format>
static void SwizzleLayout(Format* b, uint32 filled) {
static const int kNumSurroundChannels = 6;
Format aac[kNumSurroundChannels];
for (uint32 i = 0; i < filled; i += sizeof(aac), b += kNumSurroundChannels) {
memcpy(aac, b, sizeof(aac));
b[0] = aac[1]; // L
b[1] = aac[2]; // R
b[2] = aac[0]; // C
b[3] = aac[5]; // LFE
b[4] = aac[3]; // Ls
b[5] = aac[4]; // Rs
}
}
} // namespace
// Note to future hackers of this function: Do not add locks here because we
// call out to third party source that might do crazy things including adquire
// external locks or somehow re-enter here because its legal for them to call
// some audio functions.
void PCMQueueOutAudioOutputStream::RenderCallback(void* p_this,
AudioQueueRef queue,
AudioQueueBufferRef buffer) {
PCMQueueOutAudioOutputStream* audio_stream =
static_cast<PCMQueueOutAudioOutputStream*>(p_this);
// Call the audio source to fill the free buffer with data. Not having a
// source means that the queue has been closed. This is not an error.
AudioSourceCallback* source = audio_stream->source_;
if (!source)
return;
// Adjust the number of pending bytes by subtracting the amount played.
if (!static_cast<AudioQueueUserData*>(buffer->mUserData)->empty_buffer)
audio_stream->pending_bytes_ -= buffer->mAudioDataByteSize;
uint32 capacity = buffer->mAudioDataBytesCapacity;
uint32 filled = source->OnMoreData(audio_stream, buffer->mAudioData,
capacity, audio_stream->pending_bytes_);
// In order to keep the callback running, we need to provide a positive amount
// of data to the audio queue. To simulate the behavior of Windows, we write
// a buffer of silence.
if (!filled) {
CHECK(audio_stream->silence_bytes_ <= static_cast<int>(capacity));
filled = audio_stream->silence_bytes_;
memset(buffer->mAudioData, 0, filled);
static_cast<AudioQueueUserData*>(buffer->mUserData)->empty_buffer = true;
} else if (filled > capacity) {
// User probably overran our buffer.
audio_stream->HandleError(0);
return;
} else {
static_cast<AudioQueueUserData*>(buffer->mUserData)->empty_buffer = false;
}
// Handle channel order for 5.1 audio.
if (audio_stream->format_.mChannelsPerFrame == 6) {
if (audio_stream->format_.mBitsPerChannel == 8) {
SwizzleLayout(reinterpret_cast<uint8*>(buffer->mAudioData), filled);
} else if (audio_stream->format_.mBitsPerChannel == 16) {
SwizzleLayout(reinterpret_cast<int16*>(buffer->mAudioData), filled);
} else if (audio_stream->format_.mBitsPerChannel == 32) {
SwizzleLayout(reinterpret_cast<int32*>(buffer->mAudioData), filled);
}
}
buffer->mAudioDataByteSize = filled;
// Incremnet bytes by amount filled into audio buffer if this is not a
// silence buffer.
if (!static_cast<AudioQueueUserData*>(buffer->mUserData)->empty_buffer)
audio_stream->pending_bytes_ += filled;
if (NULL == queue)
return;
// Queue the audio data to the audio driver.
OSStatus err = AudioQueueEnqueueBuffer(queue, buffer, 0, NULL);
if (err != noErr) {
if (err == kAudioQueueErr_EnqueueDuringReset) {
// This is the error you get if you try to enqueue a buffer and the
// queue has been closed. Not really a problem if indeed the queue
// has been closed.
if (!audio_stream->source_)
return;
}
audio_stream->HandleError(err);
}
}
void PCMQueueOutAudioOutputStream::Start(AudioSourceCallback* callback) {
DCHECK(callback);
OSStatus err = noErr;
source_ = callback;
pending_bytes_ = 0;
// Ask the source to pre-fill all our buffers before playing.
for (uint32 ix = 0; ix != kNumBuffers; ++ix) {
buffer_[ix]->mAudioDataByteSize = 0;
RenderCallback(this, NULL, buffer_[ix]);
}
// Queue the buffers to the audio driver, sounds starts now.
for (uint32 ix = 0; ix != kNumBuffers; ++ix) {
err = AudioQueueEnqueueBuffer(audio_queue_, buffer_[ix], 0, NULL);
if (err != noErr) {
HandleError(err);
return;
}
}
err = AudioQueueStart(audio_queue_, NULL);
if (err != noErr) {
HandleError(err);
return;
}
}
|