1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
|
// Copyright (c) 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <algorithm>
#include <cmath>
#include "base/bind.h"
#include "media/base/audio_bus.h"
#include "media/base/audio_shifter.h"
namespace media {
// return true if x is between a and b.
static bool between(double x, double a, double b) {
if (b < a)
return b <= x && x <= a;
return a <= x && x <= b;
}
class ClockSmoother {
public:
explicit ClockSmoother(base::TimeDelta clock_accuracy) :
clock_accuracy_(clock_accuracy),
inaccuracy_delta_(clock_accuracy * 10) {
inaccuracies_.push_back(std::make_pair(inaccuracy_sum_, inaccuracy_delta_));
}
base::TimeTicks Smooth(base::TimeTicks t,
base::TimeDelta delta) {
base::TimeTicks ret = t;
if (!previous_.is_null()) {
base::TimeDelta actual_delta = t - previous_;
base::TimeDelta new_fraction_off = actual_delta - delta;
inaccuracy_sum_ += new_fraction_off;
inaccuracy_delta_ += actual_delta;
inaccuracies_.push_back(std::make_pair(new_fraction_off, actual_delta));
if (inaccuracies_.size() > 1000) {
inaccuracy_sum_ -= inaccuracies_.front().first;
inaccuracy_delta_ -= inaccuracies_.front().second;
inaccuracies_.pop_front();
}
// 0.01 means 1% faster than regular clock.
// -0.02 means 2% slower than regular clock.
double fraction_off = inaccuracy_sum_.InSecondsF() /
inaccuracy_delta_.InSecondsF();
double delta_seconds = delta.InSecondsF();
delta_seconds += delta_seconds * fraction_off;
base::TimeTicks expected = previous_ +
base::TimeDelta::FromSecondsD(delta_seconds);
base::TimeDelta diff = t - expected;
if (diff < clock_accuracy_ && diff > -clock_accuracy_) {
ret = t + diff / 1000;
}
}
previous_ = ret;
return ret;
}
// 1.01 means 1% faster than regular clock.
// -0.98 means 2% slower than regular clock.
double Rate() const {
return 1.0 + inaccuracy_sum_.InSecondsF() /
inaccuracy_delta_.InSecondsF();
}
private:
base::TimeDelta clock_accuracy_;
std::deque<std::pair<base::TimeDelta, base::TimeDelta> > inaccuracies_;
base::TimeDelta inaccuracy_sum_;
base::TimeDelta inaccuracy_delta_;
base::TimeTicks previous_;
};
AudioShifter::AudioQueueEntry::AudioQueueEntry(
base::TimeTicks target_playout_time_,
scoped_ptr<AudioBus> audio_) :
target_playout_time(target_playout_time_),
audio(audio_.release()) {
}
AudioShifter::AudioQueueEntry::~AudioQueueEntry() {}
AudioShifter::AudioShifter(base::TimeDelta max_buffer_size,
base::TimeDelta clock_accuracy,
base::TimeDelta adjustment_time,
size_t rate,
int channels) :
max_buffer_size_(max_buffer_size),
clock_accuracy_(clock_accuracy),
adjustment_time_(adjustment_time),
rate_(rate),
input_clock_smoother_(new ClockSmoother(clock_accuracy)),
output_clock_smoother_(new ClockSmoother(clock_accuracy)),
running_(false),
position_(0),
previous_requested_samples_(0),
resampler_(channels, 1.0, 96,
base::Bind(&AudioShifter::ResamplerCallback,
base::Unretained(this))),
current_ratio_(1.0) {
}
AudioShifter::~AudioShifter() {}
void AudioShifter::Push(scoped_ptr<AudioBus> input,
base::TimeTicks playout_time) {
if (!queue_.empty()) {
playout_time = input_clock_smoother_->Smooth(
playout_time,
base::TimeDelta::FromSeconds(queue_.back().audio->frames()) / rate_);
}
queue_.push_back(AudioQueueEntry(playout_time, input.Pass()));
while (!queue_.empty() &&
queue_.back().target_playout_time -
queue_.front().target_playout_time > max_buffer_size_) {
DVLOG(1) << "AudioShifter: Audio overflow!";
queue_.pop_front();
position_ = 0;
}
}
void AudioShifter::Pull(AudioBus* output,
base::TimeTicks playout_time) {
// Add the kernel size since we incur some internal delay in
// resampling. All resamplers incur some delay, and for the
// SincResampler (used by MultiChannelResampler), this is
// (currently) kKernalSize / 2 frames.
playout_time += base::TimeDelta::FromSeconds(
SincResampler::kKernelSize) / rate_ / 2;
playout_time = output_clock_smoother_->Smooth(
playout_time,
base::TimeDelta::FromSeconds(previous_requested_samples_) / rate_);
previous_requested_samples_ = output->frames();
base::TimeTicks stream_time;
base::TimeTicks buffer_end_time;
if (queue_.empty()) {
DCHECK_EQ(position_, 0UL);
stream_time = end_of_last_consumed_audiobus_;
buffer_end_time = end_of_last_consumed_audiobus_;
} else {
stream_time = queue_.front().target_playout_time;
buffer_end_time = queue_.back().target_playout_time;
}
stream_time += base::TimeDelta::FromSecondsD(
(position_ - resampler_.BufferedFrames()) / rate_);
if (!running_ &&
base::TimeDelta::FromSeconds(output->frames() * 2) / rate_ +
clock_accuracy_ > buffer_end_time - stream_time) {
// We're not running right now, and we don't really have enough data
// to satisfy output reliably. Wait.
Zero(output);
return;
}
if (playout_time < stream_time -
base::TimeDelta::FromSeconds(output->frames()) / rate_ / 2 -
(running_ ? clock_accuracy_ : base::TimeDelta())) {
// |playout_time| is too far before the earliest known audio sample.
Zero(output);
return;
}
if (buffer_end_time < playout_time) {
// If the "playout_time" is actually capture time, then
// the entire queue will be in the past. Since we cannot
// play audio in the past. We add one buffer size to the
// bias to avoid buffer underruns in the future.
if (bias_ == base::TimeDelta()) {
bias_ = playout_time - stream_time +
clock_accuracy_ +
base::TimeDelta::FromSeconds(output->frames()) / rate_;
}
stream_time += bias_;
} else {
// Normal case, some part of the queue is
// ahead of the scheduled playout time.
// Skip any data that is simply too old, if we have
// better data somewhere in the qeueue.
// Reset bias
bias_ = base::TimeDelta();
while (!queue_.empty() &&
playout_time - stream_time > clock_accuracy_) {
queue_.pop_front();
position_ = 0;
resampler_.Flush();
if (queue_.empty()) {
Zero(output);
return;
}
stream_time = queue_.front().target_playout_time;
}
}
running_ = true;
double steady_ratio = output_clock_smoother_->Rate() /
input_clock_smoother_->Rate();
double time_difference = (playout_time - stream_time).InSecondsF();
double adjustment_time = adjustment_time_.InSecondsF();
// This is the ratio we would need to get perfect sync after
// |adjustment_time| has passed.
double slow_ratio = steady_ratio + time_difference / adjustment_time;
slow_ratio = std::max(0.9, std::min(1.1, slow_ratio));
adjustment_time = output->frames() / static_cast<double>(rate_);
// This is ratio we we'd need get perfect sync at the end of the
// current output audiobus.
double fast_ratio = steady_ratio + time_difference / adjustment_time;
fast_ratio = std::max(0.9, std::min(1.1, fast_ratio));
// If the current ratio is somewhere between the slow and the fast
// ratio, then keep it. This means we don't have to recalculate the
// tables very often and also allows us to converge on good sync faster.
if (!between(current_ratio_, slow_ratio, fast_ratio)) {
// Check if the direction has changed.
if ((current_ratio_ < steady_ratio) == (slow_ratio < steady_ratio)) {
// Two possible scenarios:
// Either we're really close to perfect sync, but the current ratio
// would overshoot, or the current ratio is insufficient to get to
// perfect sync in the alloted time. Clamp.
double max_ratio = std::max(fast_ratio, slow_ratio);
double min_ratio = std::min(fast_ratio, slow_ratio);
current_ratio_ = std::min(max_ratio,
std::max(min_ratio, current_ratio_));
} else {
// The "direction" has changed. (From speed up to slow down or
// vice versa, so we just take the slow ratio.
current_ratio_ = slow_ratio;
}
resampler_.SetRatio(current_ratio_);
}
resampler_.Resample(output->frames(), output);
}
void AudioShifter::ResamplerCallback(int frame_delay, AudioBus* destination) {
// TODO(hubbe): Use frame_delay
int pos = 0;
while (pos < destination->frames() && !queue_.empty()) {
size_t to_copy = std::min<size_t>(
queue_.front().audio->frames() - position_,
destination->frames() - pos);
CHECK_GT(to_copy, 0UL);
queue_.front().audio->CopyPartialFramesTo(position_,
to_copy,
pos,
destination);
pos += to_copy;
position_ += to_copy;
if (position_ >= static_cast<size_t>(queue_.front().audio->frames())) {
end_of_last_consumed_audiobus_ = queue_.front().target_playout_time +
base::TimeDelta::FromSeconds(queue_.front().audio->frames()) / rate_;
position_ -= queue_.front().audio->frames();
queue_.pop_front();
}
}
if (pos < destination->frames()) {
// Underflow
running_ = false;
position_ = 0;
previous_playout_time_ = base::TimeTicks();
bias_ = base::TimeDelta();
destination->ZeroFramesPartial(pos, destination->frames() - pos);
}
}
void AudioShifter::Flush() {
resampler_.Flush();
position_ = 0;
queue_.clear();
running_ = false;
previous_playout_time_ = base::TimeTicks();
bias_ = base::TimeDelta();
}
void AudioShifter::Zero(AudioBus* output) {
output->Zero();
running_ = false;
previous_playout_time_ = base::TimeTicks();
bias_ = base::TimeDelta();
}
} // namespace media
|