1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
|
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/base/h264_bitstream_converter.h"
#include "base/logging.h"
namespace media {
static const uint8 kStartCodePrefix[3] = {0, 0, 1};
// Helper function which determines whether NAL unit of given type marks
// access unit boundary.
static bool IsAccessUnitBoundaryNal(int nal_unit_type) {
// Check if this packet marks access unit boundary by checking the
// packet type.
if (nal_unit_type == 6 || // Supplemental enhancement information
nal_unit_type == 7 || // Picture parameter set
nal_unit_type == 8 || // Sequence parameter set
nal_unit_type == 9 || // Access unit delimiter
(nal_unit_type >= 14 && nal_unit_type <= 18)) { // Reserved types
return true;
}
return false;
}
H264BitstreamConverter::H264BitstreamConverter()
: configuration_processed_(false),
first_nal_unit_in_access_unit_(true),
nal_unit_length_field_width_(0) {
}
H264BitstreamConverter::~H264BitstreamConverter() {}
uint32 H264BitstreamConverter::ParseConfigurationAndCalculateSize(
const uint8* configuration_record,
uint32 configuration_record_size) {
// FFmpeg's AVCodecContext's extradata field contains the Decoder Specific
// Information from MP4 headers that contain the H.264 SPS and PPS members.
// ISO 14496-15 Chapter 5.2.4 AVCDecoderConfigurationRecord.
// AVCConfigurationRecord must be at least 7 bytes long.
if (configuration_record == NULL || configuration_record_size < 7) {
return 0; // Error: invalid input
}
const uint8* decoder_configuration = configuration_record;
uint32 parameter_set_size_bytes = 0;
// We can skip the four first bytes as they're only profile information
decoder_configuration += 4;
// Fifth byte's two LSBs contain the interleaving field's size minus one
uint8 size_of_len_field = (*decoder_configuration & 0x3) + 1;
if (size_of_len_field != 1 && size_of_len_field != 2 &&
size_of_len_field != 4) {
return 0; // Error: invalid input, NAL unit field len is not correct
}
decoder_configuration++;
// Sixth byte's five LSBs contain the number of SPSs
uint8 sps_count = *decoder_configuration & 0x1F;
decoder_configuration++;
// Then we have N * SPS's with two byte length field and actual SPS
while (sps_count-- > 0) {
if ((decoder_configuration - configuration_record) + 2 >
static_cast<int32>(configuration_record_size)) {
return 0; // Error: ran out of data
}
uint16 sps_len = decoder_configuration[0] << 8 | decoder_configuration[1];
decoder_configuration += 2;
// write the SPS to output, always with zero byte + start code prefix
parameter_set_size_bytes += 1 + sizeof(kStartCodePrefix);
decoder_configuration += sps_len;
parameter_set_size_bytes += sps_len;
}
// Then we have the numner of pps in one byte
uint8 pps_count = *decoder_configuration;
decoder_configuration++;
// And finally, we have N * PPS with two byte length field and actual PPS
while (pps_count-- > 0) {
if ((decoder_configuration - configuration_record) + 2 >
static_cast<int32>(configuration_record_size)) {
return 0; // Error: ran out of data
}
uint16 pps_len = decoder_configuration[0] << 8 | decoder_configuration[1];
decoder_configuration += 2;
// write the SPS to output, always with zero byte + start code prefix
parameter_set_size_bytes += 1 + sizeof(kStartCodePrefix);
decoder_configuration += pps_len;
parameter_set_size_bytes += pps_len;
}
// We're done processing the AVCDecoderConfigurationRecord,
// store the needed information for parsing actual payload
nal_unit_length_field_width_ = size_of_len_field;
configuration_processed_ = true;
return parameter_set_size_bytes;
}
uint32 H264BitstreamConverter::CalculateNeededOutputBufferSize(
const uint8* input,
uint32 input_size) const {
uint32 output_size = 0;
uint32 data_left = input_size;
bool first_nal_in_this_access_unit = first_nal_unit_in_access_unit_;
if (input == NULL || input_size == 0) {
return 0; // Error: invalid input data
}
if (!configuration_processed_) {
return 0; // Error: configuration not handled, we don't know nal unit width
}
CHECK(nal_unit_length_field_width_ == 1 ||
nal_unit_length_field_width_ == 2 ||
nal_unit_length_field_width_ == 4);
// Then add the needed size for the actual packet
while (data_left > 0) {
// Read the next NAL unit length from the input buffer
uint8 size_of_len_field;
uint32 nal_unit_length;
for (nal_unit_length = 0, size_of_len_field = nal_unit_length_field_width_;
size_of_len_field > 0;
input++, size_of_len_field--, data_left--) {
nal_unit_length <<= 8;
nal_unit_length |= *input;
}
if (nal_unit_length == 0) {
break; // Signifies that no more data left in the buffer
} else if (nal_unit_length > data_left) {
return 0; // Error: Not enough data for correct conversion
}
data_left -= nal_unit_length;
// five least significant bits of first NAL unit byte signify nal_unit_type
int nal_unit_type = *input & 0x1F;
if (first_nal_in_this_access_unit ||
IsAccessUnitBoundaryNal(nal_unit_type)) {
output_size += 1; // Extra zero_byte for these nal units
first_nal_in_this_access_unit = false;
}
// Start code prefix
output_size += sizeof(kStartCodePrefix);
// Actual NAL unit size
output_size += nal_unit_length;
input += nal_unit_length;
// No need for trailing zero bits
}
return output_size;
}
bool H264BitstreamConverter::ConvertAVCDecoderConfigurationRecordToByteStream(
const uint8* input,
uint32 input_size,
uint8* output,
uint32* output_size) {
uint8* outscan = output;
// FFmpeg's AVCodecContext's extradata field contains the Decoder Specific
// Information from MP4 headers that contain the H.264 SPS and PPS members.
// ISO 14496-15 Chapter 5.2.4 AVCDecoderConfigurationRecord.
const uint8* decoder_configuration = input;
uint32 decoderconfiguration_size = input_size;
uint32 out_size = 0;
if (decoder_configuration == NULL || decoderconfiguration_size == 0) {
return 0; // Error: input invalid
}
// We can skip the four first bytes as they're only profile information.
decoder_configuration += 4;
// Fifth byte's two LSBs contain the interleaving field's size minus one
uint8 size_of_len_field = (*decoder_configuration & 0x3) + 1;
if (size_of_len_field != 1 && size_of_len_field != 2 &&
size_of_len_field != 4) {
return 0; // Error: invalid input, NAL unit field len is not correct
}
decoder_configuration++;
// Sixth byte's five LSBs contain the number of SPSs
uint8 sps_count = *decoder_configuration & 0x1F;
decoder_configuration++;
// Then we have N * SPS's with two byte length field and actual SPS
while (sps_count-- > 0) {
uint16 sps_len = decoder_configuration[0] << 8 |
decoder_configuration[1];
decoder_configuration += 2;
if (out_size + 1 + sizeof(kStartCodePrefix) + sps_len >
*output_size) {
*output_size = 0;
return 0; // too small output buffer;
}
// write the SPS to output, always with zero byte + start code prefix
*outscan = 0; // zero byte
outscan += 1;
memcpy(outscan, kStartCodePrefix, sizeof(kStartCodePrefix));
outscan += sizeof(kStartCodePrefix);
memcpy(outscan, decoder_configuration, sps_len);
decoder_configuration += sps_len;
outscan += sps_len;
out_size += 1 + sizeof(kStartCodePrefix) + sps_len;
}
// Then we have the numner of pps in one byte
uint8 pps_count = *decoder_configuration;
decoder_configuration++;
// And finally, we have N * PPS with two byte length field and actual PPS
while (pps_count-- > 0) {
uint16 pps_len = decoder_configuration[0] << 8 | decoder_configuration[1];
decoder_configuration += 2;
if (out_size + 1 + sizeof(kStartCodePrefix) + pps_len >
*output_size) {
*output_size = 0;
return 0; // too small output buffer;
}
// write the SPS to output, always with zero byte + start code prefix
*outscan = 0; // zero byte
outscan += 1;
memcpy(outscan, kStartCodePrefix, sizeof(kStartCodePrefix));
outscan += sizeof(kStartCodePrefix);
memcpy(outscan, decoder_configuration, pps_len);
decoder_configuration += pps_len;
outscan += pps_len;
out_size += 1 + sizeof(kStartCodePrefix) + pps_len;
}
// We're done processing the AVCDecoderConfigurationRecord, store the needed
// information
nal_unit_length_field_width_ = size_of_len_field;
configuration_processed_ = true;
*output_size = out_size;
return true;
}
bool H264BitstreamConverter::ConvertNalUnitStreamToByteStream(
const uint8* input, uint32 input_size,
uint8* output, uint32* output_size) {
const uint8* inscan = input; // We read the input from here progressively
uint8* outscan = output; // We write the output to here progressively
uint32 data_left = input_size;
if (inscan == NULL || input_size == 0 ||
outscan == NULL || *output_size == 0) {
*output_size = 0;
return false; // Error: invalid input
}
// NAL unit width should be known at this point
CHECK(nal_unit_length_field_width_ == 1 ||
nal_unit_length_field_width_ == 2 ||
nal_unit_length_field_width_ == 4);
// Do the actual conversion for the actual input packet
while (data_left > 0) {
uint8 i;
uint32 nal_unit_length;
// Read the next NAL unit length from the input buffer by scanning
// the input stream with the specific length field width
for (nal_unit_length = 0, i = nal_unit_length_field_width_;
i > 0 && data_left > 0;
inscan++, i--, data_left--) {
nal_unit_length <<= 8;
nal_unit_length |= *inscan;
}
if (nal_unit_length == 0) {
break; // Successful conversion, end of buffer
} else if (nal_unit_length > data_left) {
*output_size = 0;
return false; // Error: not enough data for correct conversion
}
uint32 start_code_len;
first_nal_unit_in_access_unit_ ?
start_code_len = sizeof(kStartCodePrefix) + 1 :
start_code_len = sizeof(kStartCodePrefix);
if (static_cast<uint32>(outscan - output) +
start_code_len + nal_unit_length > *output_size) {
*output_size = 0;
return false; // Error: too small output buffer
}
// Five least significant bits of first NAL unit byte signify
// nal_unit_type.
int nal_unit_type = *inscan & 0x1F;
// Check if this packet marks access unit boundary by checking the
// packet type.
if (IsAccessUnitBoundaryNal(nal_unit_type)) {
first_nal_unit_in_access_unit_ = true;
}
// Write extra zero-byte before start code prefix if this packet
// signals next access unit.
if (first_nal_unit_in_access_unit_) {
*outscan = 0;
outscan++;
first_nal_unit_in_access_unit_ = false;
}
// No need to write leading zero bits.
// Write start-code prefix.
memcpy(outscan, kStartCodePrefix, sizeof(kStartCodePrefix));
outscan += sizeof(kStartCodePrefix);
// Then write the actual NAL unit from the input buffer.
memcpy(outscan, inscan, nal_unit_length);
inscan += nal_unit_length;
data_left -= nal_unit_length;
outscan += nal_unit_length;
// No need for trailing zero bits.
}
// Successful conversion, output the freshly allocated bitstream buffer.
*output_size = static_cast<uint32>(outscan - output);
return true;
}
} // namespace media
|