summaryrefslogtreecommitdiffstats
path: root/media/base/seekable_buffer_unittest.cc
blob: 286580bf88d8004d3468a489ce437eca8f49def8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
// Copyright (c) 2010 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/logging.h"
#include "base/scoped_ptr.h"
#include "base/time.h"
#include "media/base/data_buffer.h"
#include "media/base/seekable_buffer.h"
#include "testing/gtest/include/gtest/gtest.h"

namespace {

class SeekableBufferTest : public testing::Test {
 public:
  SeekableBufferTest() : buffer_(kBufferSize, kBufferSize) {
  }

 protected:
  static const size_t kDataSize = 409600;
  static const size_t kBufferSize = 4096;
  static const size_t kWriteSize = 512;

  virtual void SetUp() {
    // Setup seed.
    size_t seed = static_cast<int32>(base::Time::Now().ToInternalValue());
    srand(seed);
    LOG(INFO) << "Random seed: " << seed;

    // Creates a test data.
    for (size_t i = 0; i < kDataSize; i++)
      data_[i] = static_cast<char>(rand());
  }

  size_t GetRandomInt(size_t maximum) {
    return rand() % maximum + 1;
  }

  media::SeekableBuffer buffer_;
  uint8 data_[kDataSize];
  uint8 write_buffer_[kDataSize];
};

TEST_F(SeekableBufferTest, RandomReadWrite) {
  size_t write_position = 0;
  size_t read_position = 0;
  while (read_position < kDataSize) {
    // Write a random amount of data.
    size_t write_size = GetRandomInt(kBufferSize);
    write_size = std::min(write_size, kDataSize - write_position);
    bool should_append = buffer_.Append(data_ + write_position, write_size);
    write_position += write_size;
    EXPECT_GE(write_position, read_position);
    EXPECT_EQ(write_position - read_position, buffer_.forward_bytes());
    EXPECT_EQ(should_append, buffer_.forward_bytes() < kBufferSize)
        << "Incorrect buffer full reported";

    // Peek a random amount of data.
    size_t copy_size = GetRandomInt(kBufferSize);
    size_t bytes_copied = buffer_.Peek(write_buffer_, copy_size);
    EXPECT_GE(copy_size, bytes_copied);
    EXPECT_EQ(0, memcmp(write_buffer_, data_ + read_position, bytes_copied));

    // Read a random amount of data.
    size_t read_size = GetRandomInt(kBufferSize);
    size_t bytes_read = buffer_.Read(write_buffer_, read_size);
    EXPECT_GE(read_size, bytes_read);
    EXPECT_EQ(0, memcmp(write_buffer_, data_ + read_position, bytes_read));
    read_position += bytes_read;
    EXPECT_GE(write_position, read_position);
    EXPECT_EQ(write_position - read_position, buffer_.forward_bytes());
  }
}

TEST_F(SeekableBufferTest, ReadWriteSeek) {
  const size_t kReadSize = kWriteSize / 4;

  for (int i = 0; i < 10; ++i) {
    // Write until buffer is full.
    for (size_t j = 0; j < kBufferSize; j += kWriteSize) {
      bool should_append = buffer_.Append(data_ + j, kWriteSize);
      EXPECT_EQ(j < kBufferSize - kWriteSize, should_append)
          << "Incorrect buffer full reported";
      EXPECT_EQ(j + kWriteSize, buffer_.forward_bytes());
    }

    // Simulate a read and seek pattern. Each loop reads 4 times, each time
    // reading a quarter of |kWriteSize|.
    size_t read_position = 0;
    size_t forward_bytes = kBufferSize;
    for (size_t j = 0; j < kBufferSize; j += kWriteSize) {
      // Read.
      EXPECT_EQ(kReadSize, buffer_.Read(write_buffer_, kReadSize));
      forward_bytes -= kReadSize;
      EXPECT_EQ(forward_bytes, buffer_.forward_bytes());
      EXPECT_EQ(0, memcmp(write_buffer_, data_ + read_position, kReadSize));
      read_position += kReadSize;

      // Seek forward.
      EXPECT_TRUE(buffer_.Seek(2 * kReadSize));
      forward_bytes -= 2 * kReadSize;
      read_position += 2 * kReadSize;
      EXPECT_EQ(forward_bytes, buffer_.forward_bytes());

      // Copy.
      EXPECT_EQ(kReadSize, buffer_.Peek(write_buffer_, kReadSize));
      EXPECT_EQ(forward_bytes, buffer_.forward_bytes());
      EXPECT_EQ(0, memcmp(write_buffer_, data_ + read_position, kReadSize));

      // Read.
      EXPECT_EQ(kReadSize, buffer_.Read(write_buffer_, kReadSize));
      forward_bytes -= kReadSize;
      EXPECT_EQ(forward_bytes, buffer_.forward_bytes());
      EXPECT_EQ(0, memcmp(write_buffer_, data_ + read_position, kReadSize));
      read_position += kReadSize;

      // Seek backward.
      EXPECT_TRUE(buffer_.Seek(-3 * static_cast<int32>(kReadSize)));
      forward_bytes += 3 * kReadSize;
      read_position -= 3 * kReadSize;
      EXPECT_EQ(forward_bytes, buffer_.forward_bytes());

      // Copy.
      EXPECT_EQ(kReadSize, buffer_.Peek(write_buffer_, kReadSize));
      EXPECT_EQ(forward_bytes, buffer_.forward_bytes());
      EXPECT_EQ(0, memcmp(write_buffer_, data_ + read_position, kReadSize));

      // Read.
      EXPECT_EQ(kReadSize, buffer_.Read(write_buffer_, kReadSize));
      forward_bytes -= kReadSize;
      EXPECT_EQ(forward_bytes, buffer_.forward_bytes());
      EXPECT_EQ(0, memcmp(write_buffer_, data_ + read_position, kReadSize));
      read_position += kReadSize;

      // Copy.
      EXPECT_EQ(kReadSize, buffer_.Peek(write_buffer_, kReadSize));
      EXPECT_EQ(forward_bytes, buffer_.forward_bytes());
      EXPECT_EQ(0, memcmp(write_buffer_, data_ + read_position, kReadSize));

      // Read.
      EXPECT_EQ(kReadSize, buffer_.Read(write_buffer_, kReadSize));
      forward_bytes -= kReadSize;
      EXPECT_EQ(forward_bytes, buffer_.forward_bytes());
      EXPECT_EQ(0, memcmp(write_buffer_, data_ + read_position, kReadSize));
      read_position += kReadSize;

      // Seek forward.
      EXPECT_TRUE(buffer_.Seek(kReadSize));
      forward_bytes -= kReadSize;
      read_position += kReadSize;
      EXPECT_EQ(forward_bytes, buffer_.forward_bytes());
    }
  }
}

TEST_F(SeekableBufferTest, BufferFull) {
  const size_t kMaxWriteSize = 2 * kBufferSize;

  // Write and expect the buffer to be not full.
  for (size_t i = 0; i < kBufferSize - kWriteSize; i += kWriteSize) {
    EXPECT_TRUE(buffer_.Append(data_ + i, kWriteSize));
    EXPECT_EQ(i + kWriteSize, buffer_.forward_bytes());
  }

  // Write until we have kMaxWriteSize bytes in the buffer. Buffer is full in
  // these writes.
  for (size_t i = buffer_.forward_bytes(); i < kMaxWriteSize; i += kWriteSize) {
    EXPECT_FALSE(buffer_.Append(data_ + i, kWriteSize));
    EXPECT_EQ(i + kWriteSize, buffer_.forward_bytes());
  }

  // Read until the buffer is empty.
  size_t read_position = 0;
  while (buffer_.forward_bytes()) {
    // Read a random amount of data.
    size_t read_size = GetRandomInt(kBufferSize);
    size_t forward_bytes = buffer_.forward_bytes();
    size_t bytes_read = buffer_.Read(write_buffer_, read_size);
    EXPECT_EQ(0, memcmp(write_buffer_, data_ + read_position, bytes_read));
    if (read_size > forward_bytes)
      EXPECT_EQ(forward_bytes, bytes_read);
    else
      EXPECT_EQ(read_size, bytes_read);
    read_position += bytes_read;
    EXPECT_GE(kMaxWriteSize, read_position);
    EXPECT_EQ(kMaxWriteSize - read_position, buffer_.forward_bytes());
  }

  // Expects we have no bytes left.
  EXPECT_EQ(0u, buffer_.forward_bytes());
  EXPECT_EQ(0u, buffer_.Read(write_buffer_, 1));
}

TEST_F(SeekableBufferTest, SeekBackward) {
  EXPECT_EQ(0u, buffer_.forward_bytes());
  EXPECT_EQ(0u, buffer_.backward_bytes());
  EXPECT_FALSE(buffer_.Seek(1));
  EXPECT_FALSE(buffer_.Seek(-1));

  const size_t kReadSize = 256;

  // Write into buffer until it's full.
  for (size_t i = 0; i < kBufferSize; i += kWriteSize) {
    // Write a random amount of data.
    buffer_.Append(data_ + i, kWriteSize);
  }

  // Read until buffer is empty.
  for (size_t i = 0; i < kBufferSize; i += kReadSize) {
    EXPECT_EQ(kReadSize, buffer_.Read(write_buffer_, kReadSize));
    EXPECT_EQ(0, memcmp(write_buffer_, data_ + i, kReadSize));
  }

  // Seek backward.
  EXPECT_TRUE(buffer_.Seek(-static_cast<int32>(kBufferSize)));
  EXPECT_FALSE(buffer_.Seek(-1));

  // Read again.
  for (size_t i = 0; i < kBufferSize; i += kReadSize) {
    EXPECT_EQ(kReadSize, buffer_.Read(write_buffer_, kReadSize));
    EXPECT_EQ(0, memcmp(write_buffer_, data_ + i, kReadSize));
  }
}

TEST_F(SeekableBufferTest, GetCurrentChunk) {
  const size_t kSeekSize = kWriteSize / 3;

  scoped_refptr<media::DataBuffer> buffer = new media::DataBuffer(kWriteSize);
  memcpy(buffer->GetWritableData(), data_, kWriteSize);
  buffer->SetDataSize(kWriteSize);

  const uint8* data;
  size_t size;
  EXPECT_FALSE(buffer_.GetCurrentChunk(&data, &size));

  buffer_.Append(buffer.get());
  EXPECT_TRUE(buffer_.GetCurrentChunk(&data, &size));
  EXPECT_EQ(data, buffer->GetData());
  EXPECT_EQ(size, buffer->GetDataSize());

  buffer_.Seek(kSeekSize);
  EXPECT_TRUE(buffer_.GetCurrentChunk(&data, &size));
  EXPECT_EQ(data, buffer->GetData() + kSeekSize);
  EXPECT_EQ(size, buffer->GetDataSize() - kSeekSize);
}

TEST_F(SeekableBufferTest, SeekForward) {
  size_t write_position = 0;
  size_t read_position = 0;
  while (read_position < kDataSize) {
    for (int i = 0; i < 10 && write_position < kDataSize; ++i) {
      // Write a random amount of data.
      size_t write_size = GetRandomInt(kBufferSize);
      write_size = std::min(write_size, kDataSize - write_position);

      bool should_append = buffer_.Append(data_ + write_position, write_size);
      write_position += write_size;
      EXPECT_GE(write_position, read_position);
      EXPECT_EQ(write_position - read_position, buffer_.forward_bytes());
      EXPECT_EQ(should_append, buffer_.forward_bytes() < kBufferSize)
          << "Incorrect buffer full status reported";
    }

    // Read a random amount of data.
    size_t seek_size = GetRandomInt(kBufferSize);
    if (buffer_.Seek(seek_size))
      read_position += seek_size;
    EXPECT_GE(write_position, read_position);
    EXPECT_EQ(write_position - read_position, buffer_.forward_bytes());

    // Read a random amount of data.
    size_t read_size = GetRandomInt(kBufferSize);
    size_t bytes_read = buffer_.Read(write_buffer_, read_size);
    EXPECT_GE(read_size, bytes_read);
    EXPECT_EQ(0, memcmp(write_buffer_, data_ + read_position, bytes_read));
    read_position += bytes_read;
    EXPECT_GE(write_position, read_position);
    EXPECT_EQ(write_position - read_position, buffer_.forward_bytes());
  }
}

TEST_F(SeekableBufferTest, AllMethods) {
  EXPECT_EQ(0u, buffer_.Read(write_buffer_, 0));
  EXPECT_EQ(0u, buffer_.Read(write_buffer_, 1));
  EXPECT_TRUE(buffer_.Seek(0));
  EXPECT_FALSE(buffer_.Seek(-1));
  EXPECT_FALSE(buffer_.Seek(1));
  EXPECT_EQ(0u, buffer_.forward_bytes());
  EXPECT_EQ(0u, buffer_.backward_bytes());
}


TEST_F(SeekableBufferTest, GetTime) {
  const base::TimeDelta kInvalidTimestamp =
      media::StreamSample::kInvalidTimestamp;

  const struct {
    int64 first_time_useconds;
    int64 duration_useconds;
    size_t consume_bytes;
    int64 expected_time;
  } tests[] = {
    // Timestamps of 0 are treated as garbage.
    { 0, 1000000, 0, kInvalidTimestamp.ToInternalValue() },
    { 0, 4000000, 0, kInvalidTimestamp.ToInternalValue() },
    { 0, 8000000, 0, kInvalidTimestamp.ToInternalValue() },
    { 0, 1000000, 4, kInvalidTimestamp.ToInternalValue() },
    { 0, 4000000, 4, kInvalidTimestamp.ToInternalValue() },
    { 0, 8000000, 4, kInvalidTimestamp.ToInternalValue() },
    { 0, 1000000, kWriteSize, kInvalidTimestamp.ToInternalValue() },
    { 0, 4000000, kWriteSize, kInvalidTimestamp.ToInternalValue() },
    { 0, 8000000, kWriteSize, kInvalidTimestamp.ToInternalValue() },
    { 5, 1000000, 0, 5 },
    { 5, 4000000, 0, 5 },
    { 5, 8000000, 0, 5 },
    { 5, 1000000, kWriteSize / 2, 500005 },
    { 5, 4000000, kWriteSize / 2, 2000005 },
    { 5, 8000000, kWriteSize / 2, 4000005 },
    { 5, 1000000, kWriteSize, 1000005 },
    { 5, 4000000, kWriteSize, 4000005 },
    { 5, 8000000, kWriteSize, 8000005 },
  };

  // current_time() must initially return kInvalidTimestamp.
  EXPECT_EQ(kInvalidTimestamp.ToInternalValue(),
            buffer_.current_time().ToInternalValue());

  scoped_refptr<media::DataBuffer> buffer = new media::DataBuffer(kWriteSize);
  memcpy(buffer->GetWritableData(), data_, kWriteSize);
  buffer->SetDataSize(kWriteSize);

  for (size_t i = 0; i < ARRAYSIZE_UNSAFE(tests); ++i) {
    buffer->SetTimestamp(base::TimeDelta::FromMicroseconds(
        tests[i].first_time_useconds));
    buffer->SetDuration(base::TimeDelta::FromMicroseconds(
        tests[i].duration_useconds));
    buffer_.Append(buffer.get());
    EXPECT_TRUE(buffer_.Seek(tests[i].consume_bytes));

    int64 actual = buffer_.current_time().ToInternalValue();

    EXPECT_EQ(tests[i].expected_time, actual) << "With test = { start:"
        << tests[i].first_time_useconds << ", duration:"
        << tests[i].duration_useconds << ", consumed:"
        << tests[i].consume_bytes << "}\n";

    buffer_.Clear();
  }
}

}  // namespace