summaryrefslogtreecommitdiffstats
path: root/media/base/video_frame.cc
blob: a0dc57974643df0fc574c6dbbffebe38b9c2468b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "media/base/video_frame.h"

#include "base/logging.h"

namespace media {

// static
scoped_refptr<VideoFrame> VideoFrame::CreateFrame(
    VideoFrame::Format format,
    size_t width,
    size_t height,
    base::TimeDelta timestamp,
    base::TimeDelta duration) {
  DCHECK(width > 0 && height > 0);
  DCHECK(width * height < 100000000);
  scoped_refptr<VideoFrame> frame(new VideoFrame(format, width, height));
  frame->SetTimestamp(timestamp);
  frame->SetDuration(duration);
  switch (format) {
    case VideoFrame::RGB555:
    case VideoFrame::RGB565:
      frame->AllocateRGB(2u);
      break;
    case VideoFrame::RGB24:
      frame->AllocateRGB(3u);
      break;
    case VideoFrame::RGB32:
    case VideoFrame::RGBA:
      frame->AllocateRGB(4u);
      break;
    case VideoFrame::YV12:
    case VideoFrame::YV16:
      frame->AllocateYUV();
      break;
    case VideoFrame::ASCII:
      frame->AllocateRGB(1u);
      break;
    default:
      NOTREACHED();
      return NULL;
  }
  return frame;
}

// static
scoped_refptr<VideoFrame> VideoFrame::CreateEmptyFrame() {
  return new VideoFrame(VideoFrame::EMPTY, 0, 0);
}

// static
scoped_refptr<VideoFrame> VideoFrame::CreateBlackFrame(int width, int height) {
  DCHECK_GT(width, 0);
  DCHECK_GT(height, 0);

  // Create our frame.
  const base::TimeDelta kZero;
  scoped_refptr<VideoFrame> frame =
      VideoFrame::CreateFrame(VideoFrame::YV12, width, height, kZero, kZero);

  // Now set the data to YUV(0,128,128).
  const uint8 kBlackY = 0x00;
  const uint8 kBlackUV = 0x80;

  // Fill the Y plane.
  uint8* y_plane = frame->data(VideoFrame::kYPlane);
  for (size_t i = 0; i < frame->height_; ++i) {
    memset(y_plane, kBlackY, frame->width_);
    y_plane += frame->stride(VideoFrame::kYPlane);
  }

  // Fill the U and V planes.
  uint8* u_plane = frame->data(VideoFrame::kUPlane);
  uint8* v_plane = frame->data(VideoFrame::kVPlane);
  int uv_rows = frame->rows(VideoFrame::kUPlane);
  int u_row_bytes = frame->row_bytes(VideoFrame::kUPlane);
  int v_row_bytes = frame->row_bytes(VideoFrame::kVPlane);
  for (size_t i = 0; i < (size_t)uv_rows; ++i) {
    memset(u_plane, kBlackUV, u_row_bytes);
    memset(v_plane, kBlackUV, v_row_bytes);
    u_plane += frame->stride(VideoFrame::kUPlane);
    v_plane += frame->stride(VideoFrame::kVPlane);
  }

  return frame;
}

static inline size_t RoundUp(size_t value, size_t alignment) {
  // Check that |alignment| is a power of 2.
  DCHECK((alignment + (alignment - 1)) == (alignment | (alignment - 1)));
  return ((value + (alignment - 1)) & ~(alignment-1));
}

void VideoFrame::AllocateRGB(size_t bytes_per_pixel) {
  // Round up to align at a 64-bit (8 byte) boundary for each row.  This
  // is sufficient for MMX reads (movq).
  size_t bytes_per_row = RoundUp(width_ * bytes_per_pixel, 8);
  planes_ = VideoFrame::kNumRGBPlanes;
  strides_[VideoFrame::kRGBPlane] = bytes_per_row;
  data_[VideoFrame::kRGBPlane] = new uint8[bytes_per_row * height_];
  DCHECK(!(reinterpret_cast<intptr_t>(data_[VideoFrame::kRGBPlane]) & 7));
  COMPILE_ASSERT(0 == VideoFrame::kRGBPlane, RGB_data_must_be_index_0);
}

static const int kFramePadBytes = 15;  // Allows faster SIMD YUV convert.

void VideoFrame::AllocateYUV() {
  DCHECK(format_ == VideoFrame::YV12 || format_ == VideoFrame::YV16);
  // Align Y rows at 32-bit (4 byte) boundaries.  The stride for both YV12 and
  // YV16 is 1/2 of the stride of Y.  For YV12, every row of bytes for U and V
  // applies to two rows of Y (one byte of UV for 4 bytes of Y), so in the
  // case of YV12 the strides are identical for the same width surface, but the
  // number of bytes allocated for YV12 is 1/2 the amount for U & V as YV16.
  // We also round the height of the surface allocated to be an even number
  // to avoid any potential of faulting by code that attempts to access the Y
  // values of the final row, but assumes that the last row of U & V applies to
  // a full two rows of Y.
  size_t y_height = rows(VideoFrame::kYPlane);
  size_t y_stride = RoundUp(row_bytes(VideoFrame::kYPlane), 4);
  size_t uv_stride = RoundUp(row_bytes(VideoFrame::kUPlane), 4);
  size_t uv_height = rows(VideoFrame::kUPlane);
  size_t y_bytes = y_height * y_stride;
  size_t uv_bytes = uv_height * uv_stride;

  uint8* data = new uint8[y_bytes + (uv_bytes * 2) + kFramePadBytes];
  planes_ = VideoFrame::kNumYUVPlanes;
  COMPILE_ASSERT(0 == VideoFrame::kYPlane, y_plane_data_must_be_index_0);
  data_[VideoFrame::kYPlane] = data;
  data_[VideoFrame::kUPlane] = data + y_bytes;
  data_[VideoFrame::kVPlane] = data + y_bytes + uv_bytes;
  strides_[VideoFrame::kYPlane] = y_stride;
  strides_[VideoFrame::kUPlane] = uv_stride;
  strides_[VideoFrame::kVPlane] = uv_stride;
}

VideoFrame::VideoFrame(VideoFrame::Format format,
                       size_t width,
                       size_t height)
    : format_(format),
      width_(width),
      height_(height),
      planes_(0) {
  memset(&strides_, 0, sizeof(strides_));
  memset(&data_, 0, sizeof(data_));
}

VideoFrame::~VideoFrame() {
  // In multi-plane allocations, only a single block of memory is allocated
  // on the heap, and other |data| pointers point inside the same, single block
  // so just delete index 0.
  delete[] data_[0];
}

bool VideoFrame::IsValidPlane(size_t plane) const {
  switch (format_) {
    case RGB555:
    case RGB565:
    case RGB24:
    case RGB32:
    case RGBA:
      return plane == kRGBPlane;

    case YV12:
    case YV16:
      return plane == kYPlane || plane == kUPlane || plane == kVPlane;

    default:
      break;
  }

  // Intentionally leave out non-production formats.
  NOTREACHED() << "Unsupported video frame format: " << format_;
  return false;
}

int VideoFrame::stride(size_t plane) const {
  DCHECK(IsValidPlane(plane));
  return strides_[plane];
}

int VideoFrame::row_bytes(size_t plane) const {
  DCHECK(IsValidPlane(plane));
  switch (format_) {
    case RGB555:
    case RGB565:
    case RGB24:
    case RGB32:
    case RGBA:
      return width_;

    case YV12:
    case YV16:
      if (plane == kYPlane)
        return width_;
      return RoundUp(width_, 2) / 2;

    default:
      break;
  }

  // Intentionally leave out non-production formats.
  NOTREACHED() << "Unsupported video frame format: " << format_;
  return 0;
}

int VideoFrame::rows(size_t plane) const {
  DCHECK(IsValidPlane(plane));
  switch (format_) {
    case RGB555:
    case RGB565:
    case RGB24:
    case RGB32:
    case RGBA:
    case YV16:
      return height_;

    case YV12:
      if (plane == kYPlane)
        return height_;
      return RoundUp(height_, 2) / 2;

    default:
      break;
  }

  // Intentionally leave out non-production formats.
  NOTREACHED() << "Unsupported video frame format: " << format_;
  return 0;
}

uint8* VideoFrame::data(size_t plane) const {
  DCHECK(IsValidPlane(plane));
  return data_[plane];
}

bool VideoFrame::IsEndOfStream() const {
  return format_ == VideoFrame::EMPTY;
}

}  // namespace media