summaryrefslogtreecommitdiffstats
path: root/media/cast/net/rtcp/rtcp_sender.cc
blob: 61f620f14f23e9011d7607aea312c9ad26213d98 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "media/cast/net/rtcp/rtcp_sender.h"

#include <stdint.h>

#include <algorithm>
#include <vector>

#include "base/big_endian.h"
#include "base/logging.h"
#include "media/cast/net/cast_transport_defines.h"
#include "media/cast/net/pacing/paced_sender.h"
#include "media/cast/net/rtcp/rtcp_defines.h"
#include "media/cast/net/rtcp/rtcp_utility.h"

namespace media {
namespace cast {
namespace {

// Max delta is 4095 milliseconds because we need to be able to encode it in
// 12 bits.
const int64 kMaxWireFormatTimeDeltaMs = INT64_C(0xfff);

uint16 MergeEventTypeAndTimestampForWireFormat(
    const CastLoggingEvent& event,
    const base::TimeDelta& time_delta) {
  int64 time_delta_ms = time_delta.InMilliseconds();

  DCHECK_GE(time_delta_ms, 0);
  DCHECK_LE(time_delta_ms, kMaxWireFormatTimeDeltaMs);

  uint16 time_delta_12_bits =
      static_cast<uint16>(time_delta_ms & kMaxWireFormatTimeDeltaMs);

  uint16 event_type_4_bits = ConvertEventTypeToWireFormat(event);
  DCHECK(event_type_4_bits);
  DCHECK(~(event_type_4_bits & 0xfff0));
  return (event_type_4_bits << 12) | time_delta_12_bits;
}

bool EventTimestampLessThan(const RtcpReceiverEventLogMessage& lhs,
                            const RtcpReceiverEventLogMessage& rhs) {
  return lhs.event_timestamp < rhs.event_timestamp;
}

void AddReceiverLog(
    const RtcpReceiverLogMessage& redundancy_receiver_log_message,
    RtcpReceiverLogMessage* receiver_log_message,
    size_t* remaining_space,
    size_t* number_of_frames,
    size_t* total_number_of_messages_to_send) {
  RtcpReceiverLogMessage::const_iterator it =
      redundancy_receiver_log_message.begin();
  while (it != redundancy_receiver_log_message.end() &&
         *remaining_space >=
             kRtcpReceiverFrameLogSize + kRtcpReceiverEventLogSize) {
    receiver_log_message->push_front(*it);
    size_t num_event_logs = (*remaining_space - kRtcpReceiverFrameLogSize) /
                            kRtcpReceiverEventLogSize;
    RtcpReceiverEventLogMessages& event_log_messages =
        receiver_log_message->front().event_log_messages_;
    if (num_event_logs < event_log_messages.size())
      event_log_messages.resize(num_event_logs);

    *remaining_space -= kRtcpReceiverFrameLogSize +
                        event_log_messages.size() * kRtcpReceiverEventLogSize;
    ++*number_of_frames;
    *total_number_of_messages_to_send += event_log_messages.size();
    ++it;
  }
}

// A class to build a string representing the NACK list in Cast message.
//
// The string will look like "23:3-6 25:1,5-6", meaning packets 3 to 6 in frame
// 23 are being NACK'ed (i.e. they are missing from the receiver's point of
// view) and packets 1, 5 and 6 are missing in frame 25. A frame that is
// completely missing will show as "26:65535".
class NackStringBuilder {
 public:
  NackStringBuilder()
      : frame_count_(0),
        packet_count_(0),
        last_frame_id_(-1),
        last_packet_id_(-1),
        contiguous_sequence_(false) {}
  ~NackStringBuilder() {}

  bool Empty() const { return frame_count_ == 0; }

  void PushFrame(int frame_id) {
    DCHECK_GE(frame_id, 0);
    if (frame_count_ > 0) {
      if (frame_id == last_frame_id_) {
        return;
      }
      if (contiguous_sequence_) {
        stream_ << "-" << last_packet_id_;
      }
      stream_ << ", ";
    }
    stream_ << frame_id;
    last_frame_id_ = frame_id;
    packet_count_ = 0;
    contiguous_sequence_ = false;
    ++frame_count_;
  }

  void PushPacket(int packet_id) {
    DCHECK_GE(last_frame_id_, 0);
    DCHECK_GE(packet_id, 0);
    if (packet_count_ == 0) {
      stream_ << ":" << packet_id;
    } else if (packet_id == last_packet_id_ + 1) {
      contiguous_sequence_ = true;
    } else {
      if (contiguous_sequence_) {
        stream_ << "-" << last_packet_id_;
        contiguous_sequence_ = false;
      }
      stream_ << "," << packet_id;
    }
    ++packet_count_;
    last_packet_id_ = packet_id;
  }

  std::string GetString() {
    if (contiguous_sequence_) {
      stream_ << "-" << last_packet_id_;
      contiguous_sequence_ = false;
    }
    return stream_.str();
  }

 private:
  std::ostringstream stream_;
  int frame_count_;
  int packet_count_;
  int last_frame_id_;
  int last_packet_id_;
  bool contiguous_sequence_;
};
}  // namespace

RtcpSender::RtcpSender(PacedPacketSender* outgoing_transport,
                       uint32 sending_ssrc,
                       const std::string& c_name)
    : ssrc_(sending_ssrc),
      c_name_(c_name),
      transport_(outgoing_transport) {
  DCHECK_LT(c_name_.length(), kRtcpCnameSize) << "Invalid config";
}

RtcpSender::~RtcpSender() {}

void RtcpSender::SendRtcpFromRtpReceiver(
    uint32 packet_type_flags,
    const RtcpReportBlock* report_block,
    const RtcpReceiverReferenceTimeReport* rrtr,
    const RtcpCastMessage* cast_message,
    const ReceiverRtcpEventSubscriber::RtcpEventMultiMap* rtcp_events,
    base::TimeDelta target_delay) {
  if (packet_type_flags & kRtcpSr ||
      packet_type_flags & kRtcpDlrr ||
      packet_type_flags & kRtcpSenderLog) {
    NOTREACHED() << "Invalid argument";
  }
  if (packet_type_flags & kRtcpPli ||
      packet_type_flags & kRtcpRpsi ||
      packet_type_flags & kRtcpRemb ||
      packet_type_flags & kRtcpNack) {
    // Implement these for webrtc interop.
    NOTIMPLEMENTED();
  }
  PacketRef packet(new base::RefCountedData<Packet>);
  packet->data.reserve(kMaxIpPacketSize);
  if (packet_type_flags & kRtcpRr) {
    BuildRR(report_block, &packet->data);
    if (!c_name_.empty()) {
      BuildSdec(&packet->data);
    }
  }
  if (packet_type_flags & kRtcpBye) {
    BuildBye(&packet->data);
  }
  if (packet_type_flags & kRtcpRrtr) {
    DCHECK(rrtr) << "Invalid argument";
    BuildRrtr(rrtr, &packet->data);
  }
  if (packet_type_flags & kRtcpCast) {
    DCHECK(cast_message) << "Invalid argument";
    BuildCast(cast_message, target_delay, &packet->data);
  }
  if (packet_type_flags & kRtcpReceiverLog) {
    DCHECK(rtcp_events) << "Invalid argument";
    BuildReceiverLog(*rtcp_events, &packet->data);
  }

  if (packet->data.empty()) {
    NOTREACHED() << "Empty packet.";
    return;  // Sanity don't send empty packets.
  }

  transport_->SendRtcpPacket(ssrc_, packet);
}

void RtcpSender::SendRtcpFromRtpSender(
    uint32 packet_type_flags,
    const RtcpSenderInfo& sender_info,
    const RtcpDlrrReportBlock& dlrr) {
  if (packet_type_flags & kRtcpRr ||
      packet_type_flags & kRtcpPli ||
      packet_type_flags & kRtcpRrtr ||
      packet_type_flags & kRtcpCast ||
      packet_type_flags & kRtcpReceiverLog ||
      packet_type_flags & kRtcpRpsi ||
      packet_type_flags & kRtcpRemb ||
      packet_type_flags & kRtcpNack) {
    NOTREACHED() << "Invalid argument";
  }
  PacketRef packet(new base::RefCountedData<Packet>);
  packet->data.reserve(kMaxIpPacketSize);
  if (packet_type_flags & kRtcpSr) {
    BuildSR(sender_info, &packet->data);
    BuildSdec(&packet->data);
  }
  if (packet_type_flags & kRtcpBye) {
    BuildBye(&packet->data);
  }
  if (packet_type_flags & kRtcpDlrr) {
    BuildDlrrRb(dlrr, &packet->data);
  }
  if (packet->data.empty()) {
    NOTREACHED() << "Empty packet.";
    return;  // Sanity - don't send empty packets.
  }

  transport_->SendRtcpPacket(ssrc_, packet);
}

void RtcpSender::BuildRR(const RtcpReportBlock* report_block,
                         Packet* packet) const {
  size_t start_size = packet->size();
  DCHECK_LT(start_size + 32, kMaxIpPacketSize) << "Not enough buffer space";
  if (start_size + 32 > kMaxIpPacketSize)
    return;

  uint16 number_of_rows = (report_block) ? 7 : 1;
  packet->resize(start_size + 8);

  base::BigEndianWriter big_endian_writer(
      reinterpret_cast<char*>(&((*packet)[start_size])), 8);
  big_endian_writer.WriteU8(0x80 + (report_block ? 1 : 0));
  big_endian_writer.WriteU8(kPacketTypeReceiverReport);
  big_endian_writer.WriteU16(number_of_rows);
  big_endian_writer.WriteU32(ssrc_);

  if (report_block) {
    AddReportBlocks(*report_block, packet);  // Adds 24 bytes.
  }
}

void RtcpSender::AddReportBlocks(const RtcpReportBlock& report_block,
                                 Packet* packet) const {
  size_t start_size = packet->size();
  DCHECK_LT(start_size + 24, kMaxIpPacketSize) << "Not enough buffer space";
  if (start_size + 24 > kMaxIpPacketSize)
    return;

  packet->resize(start_size + 24);

  base::BigEndianWriter big_endian_writer(
      reinterpret_cast<char*>(&((*packet)[start_size])), 24);
  big_endian_writer.WriteU32(report_block.media_ssrc);
  big_endian_writer.WriteU8(report_block.fraction_lost);
  big_endian_writer.WriteU8(report_block.cumulative_lost >> 16);
  big_endian_writer.WriteU8(report_block.cumulative_lost >> 8);
  big_endian_writer.WriteU8(report_block.cumulative_lost);

  // Extended highest seq_no, contain the highest sequence number received.
  big_endian_writer.WriteU32(report_block.extended_high_sequence_number);
  big_endian_writer.WriteU32(report_block.jitter);

  // Last SR timestamp; our NTP time when we received the last report.
  // This is the value that we read from the send report packet not when we
  // received it.
  big_endian_writer.WriteU32(report_block.last_sr);

  // Delay since last received report, time since we received the report.
  big_endian_writer.WriteU32(report_block.delay_since_last_sr);
}

void RtcpSender::BuildSdec(Packet* packet) const {
  size_t start_size = packet->size();
  DCHECK_LT(start_size + 12 + c_name_.length(), kMaxIpPacketSize)
      << "Not enough buffer space";
  if (start_size + 12 > kMaxIpPacketSize)
    return;

  // SDES Source Description.
  packet->resize(start_size + 10);

  base::BigEndianWriter big_endian_writer(
      reinterpret_cast<char*>(&((*packet)[start_size])), 10);
  // We always need to add one SDES CNAME.
  big_endian_writer.WriteU8(0x80 + 1);
  big_endian_writer.WriteU8(kPacketTypeSdes);

  // Handle SDES length later on.
  uint32 sdes_length_position = static_cast<uint32>(start_size) + 3;
  big_endian_writer.WriteU16(0);
  big_endian_writer.WriteU32(ssrc_);  // Add our own SSRC.
  big_endian_writer.WriteU8(1);       // CNAME = 1
  big_endian_writer.WriteU8(static_cast<uint8>(c_name_.length()));

  size_t sdes_length = 10 + c_name_.length();
  packet->insert(
      packet->end(), c_name_.c_str(), c_name_.c_str() + c_name_.length());

  size_t padding = 0;

  // We must have a zero field even if we have an even multiple of 4 bytes.
  if ((packet->size() % 4) == 0) {
    padding++;
    packet->push_back(0);
  }
  while ((packet->size() % 4) != 0) {
    padding++;
    packet->push_back(0);
  }
  sdes_length += padding;

  // In 32-bit words minus one and we don't count the header.
  uint8 buffer_length = static_cast<uint8>((sdes_length / 4) - 1);
  (*packet)[sdes_length_position] = buffer_length;
}

void RtcpSender::BuildPli(uint32 remote_ssrc, Packet* packet) const {
  size_t start_size = packet->size();
  DCHECK_LT(start_size + 12, kMaxIpPacketSize) << "Not enough buffer space";
  if (start_size + 12 > kMaxIpPacketSize)
    return;

  packet->resize(start_size + 12);

  base::BigEndianWriter big_endian_writer(
      reinterpret_cast<char*>(&((*packet)[start_size])), 12);
  uint8 FMT = 1;  // Picture loss indicator.
  big_endian_writer.WriteU8(0x80 + FMT);
  big_endian_writer.WriteU8(kPacketTypePayloadSpecific);
  big_endian_writer.WriteU16(2);            // Used fixed length of 2.
  big_endian_writer.WriteU32(ssrc_);        // Add our own SSRC.
  big_endian_writer.WriteU32(remote_ssrc);  // Add the remote SSRC.
}

/*
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      PB       |0| Payload Type|    Native Rpsi bit string     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   defined per codec          ...                | Padding (0) |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*/
void RtcpSender::BuildRpsi(const RtcpRpsiMessage* rpsi,
                           Packet* packet) const {
  size_t start_size = packet->size();
  DCHECK_LT(start_size + 24, kMaxIpPacketSize) << "Not enough buffer space";
  if (start_size + 24 > kMaxIpPacketSize)
    return;

  packet->resize(start_size + 24);

  base::BigEndianWriter big_endian_writer(
      reinterpret_cast<char*>(&((*packet)[start_size])), 24);
  uint8 FMT = 3;  // Reference Picture Selection Indication.
  big_endian_writer.WriteU8(0x80 + FMT);
  big_endian_writer.WriteU8(kPacketTypePayloadSpecific);

  // Calculate length.
  uint32 bits_required = 7;
  uint8 bytes_required = 1;
  while ((rpsi->picture_id >> bits_required) > 0) {
    bits_required += 7;
    bytes_required++;
  }
  uint8 size = 3;
  if (bytes_required > 6) {
    size = 5;
  } else if (bytes_required > 2) {
    size = 4;
  }
  big_endian_writer.WriteU8(0);
  big_endian_writer.WriteU8(size);
  big_endian_writer.WriteU32(ssrc_);
  big_endian_writer.WriteU32(rpsi->remote_ssrc);

  uint8 padding_bytes = 4 - ((2 + bytes_required) % 4);
  if (padding_bytes == 4) {
    padding_bytes = 0;
  }
  // Add padding length in bits, padding can be 0, 8, 16 or 24.
  big_endian_writer.WriteU8(padding_bytes * 8);
  big_endian_writer.WriteU8(rpsi->payload_type);

  // Add picture ID.
  for (int i = bytes_required - 1; i > 0; i--) {
    big_endian_writer.WriteU8(0x80 |
                              static_cast<uint8>(rpsi->picture_id >> (i * 7)));
  }
  // Add last byte of picture ID.
  big_endian_writer.WriteU8(static_cast<uint8>(rpsi->picture_id & 0x7f));

  // Add padding.
  for (int j = 0; j < padding_bytes; ++j) {
    big_endian_writer.WriteU8(0);
  }
}

void RtcpSender::BuildRemb(const RtcpRembMessage* remb,
                           Packet* packet) const {
  size_t start_size = packet->size();
  size_t remb_size = 20 + 4 * remb->remb_ssrcs.size();
  DCHECK_LT(start_size + remb_size, kMaxIpPacketSize)
      << "Not enough buffer space";
  if (start_size + remb_size > kMaxIpPacketSize)
    return;

  packet->resize(start_size + remb_size);

  base::BigEndianWriter big_endian_writer(
      reinterpret_cast<char*>(&((*packet)[start_size])), remb_size);

  // Add application layer feedback.
  uint8 FMT = 15;
  big_endian_writer.WriteU8(0x80 + FMT);
  big_endian_writer.WriteU8(kPacketTypePayloadSpecific);
  big_endian_writer.WriteU8(0);
  big_endian_writer.WriteU8(static_cast<uint8>(remb->remb_ssrcs.size() + 4));
  big_endian_writer.WriteU32(ssrc_);  // Add our own SSRC.
  big_endian_writer.WriteU32(0);      // Remote SSRC must be 0.
  big_endian_writer.WriteU32(kRemb);
  big_endian_writer.WriteU8(static_cast<uint8>(remb->remb_ssrcs.size()));

  // 6 bit exponent and a 18 bit mantissa.
  uint8 bitrate_exponent;
  uint32 bitrate_mantissa;
  BitrateToRembExponentBitrate(
      remb->remb_bitrate, &bitrate_exponent, &bitrate_mantissa);

  big_endian_writer.WriteU8(static_cast<uint8>(
      (bitrate_exponent << 2) + ((bitrate_mantissa >> 16) & 0x03)));
  big_endian_writer.WriteU8(static_cast<uint8>(bitrate_mantissa >> 8));
  big_endian_writer.WriteU8(static_cast<uint8>(bitrate_mantissa));

  std::list<uint32>::const_iterator it = remb->remb_ssrcs.begin();
  for (; it != remb->remb_ssrcs.end(); ++it) {
    big_endian_writer.WriteU32(*it);
  }
}

void RtcpSender::BuildNack(const RtcpNackMessage* nack,
                           Packet* packet) const {
  size_t start_size = packet->size();
  DCHECK_LT(start_size + 16, kMaxIpPacketSize) << "Not enough buffer space";
  if (start_size + 16 > kMaxIpPacketSize)
    return;

  packet->resize(start_size + 16);

  base::BigEndianWriter big_endian_writer(
      reinterpret_cast<char*>(&((*packet)[start_size])), 16);

  uint8 FMT = 1;
  big_endian_writer.WriteU8(0x80 + FMT);
  big_endian_writer.WriteU8(kPacketTypeGenericRtpFeedback);
  big_endian_writer.WriteU8(0);
  size_t nack_size_pos = start_size + 3;
  big_endian_writer.WriteU8(3);
  big_endian_writer.WriteU32(ssrc_);              // Add our own SSRC.
  big_endian_writer.WriteU32(nack->remote_ssrc);  // Add the remote SSRC.

  // Build NACK bitmasks and write them to the Rtcp message.
  // The nack list should be sorted and not contain duplicates.
  size_t number_of_nack_fields = 0;
  size_t max_number_of_nack_fields = std::min<size_t>(
      kRtcpMaxNackFields, (kMaxIpPacketSize - packet->size()) / 4);

  std::list<uint16>::const_iterator it = nack->nack_list.begin();
  while (it != nack->nack_list.end() &&
         number_of_nack_fields < max_number_of_nack_fields) {
    uint16 nack_sequence_number = *it;
    uint16 bitmask = 0;
    ++it;
    while (it != nack->nack_list.end()) {
      int shift = static_cast<uint16>(*it - nack_sequence_number) - 1;
      if (shift >= 0 && shift <= 15) {
        bitmask |= (1 << shift);
        ++it;
      } else {
        break;
      }
    }
    // Write the sequence number and the bitmask to the packet.
    start_size = packet->size();
    DCHECK_LT(start_size + 4, kMaxIpPacketSize) << "Not enough buffer space";
    if (start_size + 4 > kMaxIpPacketSize)
      return;

    packet->resize(start_size + 4);
    base::BigEndianWriter big_endian_nack_writer(
        reinterpret_cast<char*>(&((*packet)[start_size])), 4);
    big_endian_nack_writer.WriteU16(nack_sequence_number);
    big_endian_nack_writer.WriteU16(bitmask);
    number_of_nack_fields++;
  }
  DCHECK_GE(kRtcpMaxNackFields, number_of_nack_fields);
  (*packet)[nack_size_pos] = static_cast<uint8>(2 + number_of_nack_fields);
}

void RtcpSender::BuildBye(Packet* packet) const {
  size_t start_size = packet->size();
  DCHECK_LT(start_size + 8, kMaxIpPacketSize) << "Not enough buffer space";
  if (start_size + 8 > kMaxIpPacketSize)
    return;

  packet->resize(start_size + 8);

  base::BigEndianWriter big_endian_writer(
      reinterpret_cast<char*>(&((*packet)[start_size])), 8);
  big_endian_writer.WriteU8(0x80 + 1);
  big_endian_writer.WriteU8(kPacketTypeBye);
  big_endian_writer.WriteU16(1);      // Length.
  big_endian_writer.WriteU32(ssrc_);  // Add our own SSRC.
}

void RtcpSender::BuildRrtr(const RtcpReceiverReferenceTimeReport* rrtr,
                           Packet* packet) const {
  size_t start_size = packet->size();
  DCHECK_LT(start_size + 20, kMaxIpPacketSize) << "Not enough buffer space";
  if (start_size + 20 > kMaxIpPacketSize)
    return;

  packet->resize(start_size + 20);

  base::BigEndianWriter big_endian_writer(
      reinterpret_cast<char*>(&((*packet)[start_size])), 20);

  big_endian_writer.WriteU8(0x80);
  big_endian_writer.WriteU8(kPacketTypeXr);
  big_endian_writer.WriteU16(4);      // Length.
  big_endian_writer.WriteU32(ssrc_);  // Add our own SSRC.
  big_endian_writer.WriteU8(4);       // Add block type.
  big_endian_writer.WriteU8(0);       // Add reserved.
  big_endian_writer.WriteU16(2);      // Block length.

  // Add the media (received RTP) SSRC.
  big_endian_writer.WriteU32(rrtr->ntp_seconds);
  big_endian_writer.WriteU32(rrtr->ntp_fraction);
}

void RtcpSender::BuildCast(const RtcpCastMessage* cast,
                           base::TimeDelta target_delay,
                           Packet* packet) const {
  size_t start_size = packet->size();
  DCHECK_LT(start_size + 20, kMaxIpPacketSize) << "Not enough buffer space";
  if (start_size + 20 > kMaxIpPacketSize)
    return;

  packet->resize(start_size + 20);

  base::BigEndianWriter big_endian_writer(
      reinterpret_cast<char*>(&((*packet)[start_size])), 20);
  uint8 FMT = 15;  // Application layer feedback.
  big_endian_writer.WriteU8(0x80 + FMT);
  big_endian_writer.WriteU8(kPacketTypePayloadSpecific);
  big_endian_writer.WriteU8(0);
  size_t cast_size_pos = start_size + 3;  // Save length position.
  big_endian_writer.WriteU8(4);
  big_endian_writer.WriteU32(ssrc_);              // Add our own SSRC.
  big_endian_writer.WriteU32(cast->media_ssrc);  // Remote SSRC.
  big_endian_writer.WriteU32(kCast);
  big_endian_writer.WriteU8(static_cast<uint8>(cast->ack_frame_id));
  size_t cast_loss_field_pos = start_size + 17;  // Save loss field position.
  big_endian_writer.WriteU8(0);  // Overwritten with number_of_loss_fields.
  DCHECK_LE(target_delay.InMilliseconds(),
            std::numeric_limits<uint16_t>::max());
  big_endian_writer.WriteU16(target_delay.InMilliseconds());

  size_t number_of_loss_fields = 0;
  size_t max_number_of_loss_fields = std::min<size_t>(
      kRtcpMaxCastLossFields, (kMaxIpPacketSize - packet->size()) / 4);

  MissingFramesAndPacketsMap::const_iterator frame_it =
      cast->missing_frames_and_packets.begin();

  NackStringBuilder nack_string_builder;
  for (; frame_it != cast->missing_frames_and_packets.end() &&
             number_of_loss_fields < max_number_of_loss_fields;
       ++frame_it) {
    nack_string_builder.PushFrame(frame_it->first);
    // Iterate through all frames with missing packets.
    if (frame_it->second.empty()) {
      // Special case all packets in a frame is missing.
      start_size = packet->size();
      packet->resize(start_size + 4);
      base::BigEndianWriter big_endian_nack_writer(
          reinterpret_cast<char*>(&((*packet)[start_size])), 4);
      big_endian_nack_writer.WriteU8(static_cast<uint8>(frame_it->first));
      big_endian_nack_writer.WriteU16(kRtcpCastAllPacketsLost);
      big_endian_nack_writer.WriteU8(0);
      nack_string_builder.PushPacket(kRtcpCastAllPacketsLost);
      ++number_of_loss_fields;
    } else {
      PacketIdSet::const_iterator packet_it = frame_it->second.begin();
      while (packet_it != frame_it->second.end()) {
        uint16 packet_id = *packet_it;

        start_size = packet->size();
        packet->resize(start_size + 4);
        base::BigEndianWriter big_endian_nack_writer(
            reinterpret_cast<char*>(&((*packet)[start_size])), 4);

        // Write frame and packet id to buffer before calculating bitmask.
        big_endian_nack_writer.WriteU8(static_cast<uint8>(frame_it->first));
        big_endian_nack_writer.WriteU16(packet_id);
        nack_string_builder.PushPacket(packet_id);

        uint8 bitmask = 0;
        ++packet_it;
        while (packet_it != frame_it->second.end()) {
          int shift = static_cast<uint8>(*packet_it - packet_id) - 1;
          if (shift >= 0 && shift <= 7) {
            nack_string_builder.PushPacket(*packet_it);
            bitmask |= (1 << shift);
            ++packet_it;
          } else {
            break;
          }
        }
        big_endian_nack_writer.WriteU8(bitmask);
        ++number_of_loss_fields;
      }
    }
  }
  VLOG_IF(1, !nack_string_builder.Empty())
      << "SSRC: " << cast->media_ssrc
      << ", ACK: " << cast->ack_frame_id
      << ", NACK: " << nack_string_builder.GetString();
  DCHECK_LE(number_of_loss_fields, kRtcpMaxCastLossFields);
  (*packet)[cast_size_pos] = static_cast<uint8>(4 + number_of_loss_fields);
  (*packet)[cast_loss_field_pos] = static_cast<uint8>(number_of_loss_fields);
}

void RtcpSender::BuildSR(const RtcpSenderInfo& sender_info,
                         Packet* packet) const {
  // Sender report.
  size_t start_size = packet->size();
  if (start_size + 52 > kMaxIpPacketSize) {
    DLOG(FATAL) << "Not enough buffer space";
    return;
  }

  uint16 number_of_rows = 6;
  packet->resize(start_size + 28);

  base::BigEndianWriter big_endian_writer(
      reinterpret_cast<char*>(&((*packet)[start_size])), 28);
  big_endian_writer.WriteU8(0x80);
  big_endian_writer.WriteU8(kPacketTypeSenderReport);
  big_endian_writer.WriteU16(number_of_rows);
  big_endian_writer.WriteU32(ssrc_);
  big_endian_writer.WriteU32(sender_info.ntp_seconds);
  big_endian_writer.WriteU32(sender_info.ntp_fraction);
  big_endian_writer.WriteU32(sender_info.rtp_timestamp);
  big_endian_writer.WriteU32(sender_info.send_packet_count);
  big_endian_writer.WriteU32(static_cast<uint32>(sender_info.send_octet_count));
  return;
}

/*
   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |V=2|P|reserved |   PT=XR=207   |             length            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                              SSRC                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     BT=5      |   reserved    |         block length          |
  +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
  |                 SSRC1 (SSRC of first receiver)               | sub-
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ block
  |                         last RR (LRR)                         |   1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                   delay since last RR (DLRR)                  |
  +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
*/
void RtcpSender::BuildDlrrRb(const RtcpDlrrReportBlock& dlrr,
                             Packet* packet) const {
  size_t start_size = packet->size();
  if (start_size + 24 > kMaxIpPacketSize) {
    DLOG(FATAL) << "Not enough buffer space";
    return;
  }

  packet->resize(start_size + 24);

  base::BigEndianWriter big_endian_writer(
      reinterpret_cast<char*>(&((*packet)[start_size])), 24);
  big_endian_writer.WriteU8(0x80);
  big_endian_writer.WriteU8(kPacketTypeXr);
  big_endian_writer.WriteU16(5);  // Length.
  big_endian_writer.WriteU32(ssrc_);  // Add our own SSRC.
  big_endian_writer.WriteU8(5);  // Add block type.
  big_endian_writer.WriteU8(0);  // Add reserved.
  big_endian_writer.WriteU16(3);  // Block length.
  big_endian_writer.WriteU32(ssrc_);  // Add the media (received RTP) SSRC.
  big_endian_writer.WriteU32(dlrr.last_rr);
  big_endian_writer.WriteU32(dlrr.delay_since_last_rr);
  return;
}

void RtcpSender::BuildReceiverLog(
    const ReceiverRtcpEventSubscriber::RtcpEventMultiMap& rtcp_events,
    Packet* packet) {
  const size_t packet_start_size = packet->size();
  size_t number_of_frames = 0;
  size_t total_number_of_messages_to_send = 0;
  size_t rtcp_log_size = 0;
  RtcpReceiverLogMessage receiver_log_message;

  if (!BuildRtcpReceiverLogMessage(rtcp_events,
                                   packet_start_size,
                                   &receiver_log_message,
                                   &number_of_frames,
                                   &total_number_of_messages_to_send,
                                   &rtcp_log_size)) {
    return;
  }
  packet->resize(packet_start_size + rtcp_log_size);

  base::BigEndianWriter big_endian_writer(
      reinterpret_cast<char*>(&((*packet)[packet_start_size])), rtcp_log_size);
  big_endian_writer.WriteU8(0x80 + kReceiverLogSubtype);
  big_endian_writer.WriteU8(kPacketTypeApplicationDefined);
  big_endian_writer.WriteU16(static_cast<uint16>(
      2 + 2 * number_of_frames + total_number_of_messages_to_send));
  big_endian_writer.WriteU32(ssrc_);  // Add our own SSRC.
  big_endian_writer.WriteU32(kCast);

  while (!receiver_log_message.empty() &&
         total_number_of_messages_to_send > 0) {
    RtcpReceiverFrameLogMessage& frame_log_messages(
        receiver_log_message.front());

    // Add our frame header.
    big_endian_writer.WriteU32(frame_log_messages.rtp_timestamp_);
    size_t messages_in_frame = frame_log_messages.event_log_messages_.size();
    if (messages_in_frame > total_number_of_messages_to_send) {
      // We are running out of space.
      messages_in_frame = total_number_of_messages_to_send;
    }
    // Keep track of how many messages we have left to send.
    total_number_of_messages_to_send -= messages_in_frame;

    // On the wire format is number of messages - 1.
    big_endian_writer.WriteU8(static_cast<uint8>(messages_in_frame - 1));

    base::TimeTicks event_timestamp_base =
        frame_log_messages.event_log_messages_.front().event_timestamp;
    uint32 base_timestamp_ms =
        (event_timestamp_base - base::TimeTicks()).InMilliseconds();
    big_endian_writer.WriteU8(static_cast<uint8>(base_timestamp_ms >> 16));
    big_endian_writer.WriteU8(static_cast<uint8>(base_timestamp_ms >> 8));
    big_endian_writer.WriteU8(static_cast<uint8>(base_timestamp_ms));

    while (!frame_log_messages.event_log_messages_.empty() &&
           messages_in_frame > 0) {
      const RtcpReceiverEventLogMessage& event_message =
          frame_log_messages.event_log_messages_.front();
      uint16 event_type_and_timestamp_delta =
          MergeEventTypeAndTimestampForWireFormat(
              event_message.type,
              event_message.event_timestamp - event_timestamp_base);
      switch (event_message.type) {
        case FRAME_ACK_SENT:
        case FRAME_PLAYOUT:
        case FRAME_DECODED:
          big_endian_writer.WriteU16(
              static_cast<uint16>(event_message.delay_delta.InMilliseconds()));
          big_endian_writer.WriteU16(event_type_and_timestamp_delta);
          break;
        case PACKET_RECEIVED:
          big_endian_writer.WriteU16(event_message.packet_id);
          big_endian_writer.WriteU16(event_type_and_timestamp_delta);
          break;
        default:
          NOTREACHED();
      }
      messages_in_frame--;
      frame_log_messages.event_log_messages_.pop_front();
    }
    if (frame_log_messages.event_log_messages_.empty()) {
      // We sent all messages on this frame; pop the frame header.
      receiver_log_message.pop_front();
    }
  }
  DCHECK_EQ(total_number_of_messages_to_send, 0u);
}

bool RtcpSender::BuildRtcpReceiverLogMessage(
    const ReceiverRtcpEventSubscriber::RtcpEventMultiMap& rtcp_events,
    size_t start_size,
    RtcpReceiverLogMessage* receiver_log_message,
    size_t* number_of_frames,
    size_t* total_number_of_messages_to_send,
    size_t* rtcp_log_size) {
  size_t remaining_space =
      std::min(kMaxReceiverLogBytes, kMaxIpPacketSize - start_size);
  if (remaining_space < kRtcpCastLogHeaderSize + kRtcpReceiverFrameLogSize +
                            kRtcpReceiverEventLogSize) {
    return false;
  }

  // We use this to do event timestamp sorting and truncating for events of
  // a single frame.
  std::vector<RtcpReceiverEventLogMessage> sorted_log_messages;

  // Account for the RTCP header for an application-defined packet.
  remaining_space -= kRtcpCastLogHeaderSize;

  ReceiverRtcpEventSubscriber::RtcpEventMultiMap::const_reverse_iterator rit =
      rtcp_events.rbegin();

  while (rit != rtcp_events.rend() &&
         remaining_space >=
             kRtcpReceiverFrameLogSize + kRtcpReceiverEventLogSize) {
    const RtpTimestamp rtp_timestamp = rit->first;
    RtcpReceiverFrameLogMessage frame_log(rtp_timestamp);
    remaining_space -= kRtcpReceiverFrameLogSize;
    ++*number_of_frames;

    // Get all events of a single frame.
    sorted_log_messages.clear();
    do {
      RtcpReceiverEventLogMessage event_log_message;
      event_log_message.type = rit->second.type;
      event_log_message.event_timestamp = rit->second.timestamp;
      event_log_message.delay_delta = rit->second.delay_delta;
      event_log_message.packet_id = rit->second.packet_id;
      sorted_log_messages.push_back(event_log_message);
      ++rit;
    } while (rit != rtcp_events.rend() && rit->first == rtp_timestamp);

    std::sort(sorted_log_messages.begin(),
              sorted_log_messages.end(),
              &EventTimestampLessThan);

    // From |sorted_log_messages|, only take events that are no greater than
    // |kMaxWireFormatTimeDeltaMs| seconds away from the latest event. Events
    // older than that cannot be encoded over the wire.
    std::vector<RtcpReceiverEventLogMessage>::reverse_iterator sorted_rit =
        sorted_log_messages.rbegin();
    base::TimeTicks first_event_timestamp = sorted_rit->event_timestamp;
    size_t events_in_frame = 0;
    while (sorted_rit != sorted_log_messages.rend() &&
           events_in_frame < kRtcpMaxReceiverLogMessages &&
           remaining_space >= kRtcpReceiverEventLogSize) {
      base::TimeDelta delta(first_event_timestamp -
                            sorted_rit->event_timestamp);
      if (delta.InMilliseconds() > kMaxWireFormatTimeDeltaMs)
        break;
      frame_log.event_log_messages_.push_front(*sorted_rit);
      ++events_in_frame;
      ++*total_number_of_messages_to_send;
      remaining_space -= kRtcpReceiverEventLogSize;
      ++sorted_rit;
    }

    receiver_log_message->push_front(frame_log);
  }

  rtcp_events_history_.push_front(*receiver_log_message);

  // We don't try to match RTP timestamps of redundancy frame logs with those
  // from the newest set (which would save the space of an extra RTP timestamp
  // over the wire). Unless the redundancy frame logs are very recent, it's
  // unlikely there will be a match anyway.
  if (rtcp_events_history_.size() > kFirstRedundancyOffset) {
    // Add first redundnacy messages, if enough space remaining
    AddReceiverLog(rtcp_events_history_[kFirstRedundancyOffset],
                   receiver_log_message,
                   &remaining_space,
                   number_of_frames,
                   total_number_of_messages_to_send);
  }

  if (rtcp_events_history_.size() > kSecondRedundancyOffset) {
    // Add second redundancy messages, if enough space remaining
    AddReceiverLog(rtcp_events_history_[kSecondRedundancyOffset],
                   receiver_log_message,
                   &remaining_space,
                   number_of_frames,
                   total_number_of_messages_to_send);
  }

  if (rtcp_events_history_.size() > kReceiveLogMessageHistorySize) {
    rtcp_events_history_.pop_back();
  }

  DCHECK_LE(rtcp_events_history_.size(), kReceiveLogMessageHistorySize);

  *rtcp_log_size =
      kRtcpCastLogHeaderSize + *number_of_frames * kRtcpReceiverFrameLogSize +
      *total_number_of_messages_to_send * kRtcpReceiverEventLogSize;
  DCHECK_GE(kMaxIpPacketSize, start_size + *rtcp_log_size)
      << "Not enough buffer space.";

  VLOG(3) << "number of frames: " << *number_of_frames;
  VLOG(3) << "total messages to send: " << *total_number_of_messages_to_send;
  VLOG(3) << "rtcp log size: " << *rtcp_log_size;
  return *number_of_frames > 0;
}

}  // namespace cast
}  // namespace media