summaryrefslogtreecommitdiffstats
path: root/media/cast/sender/congestion_control.cc
blob: bdf38dfd97e302a8e24dc00e04ef9e44b83a176a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// The purpose of this file is determine what bitrate to use for mirroring.
// Ideally this should be as much as possible, without causing any frames to
// arrive late.

// The current algorithm is to measure how much bandwidth we've been using
// recently. We also keep track of how much data has been queued up for sending
// in a virtual "buffer" (this virtual buffer represents all the buffers between
// the sender and the receiver, including retransmissions and so forth.)
// If we estimate that our virtual buffer is mostly empty, we try to use
// more bandwidth than our recent usage, otherwise we use less.

#include "media/cast/sender/congestion_control.h"

#include <deque>

#include "base/logging.h"
#include "media/cast/cast_config.h"
#include "media/cast/cast_defines.h"

namespace media {
namespace cast {

class AdaptiveCongestionControl : public CongestionControl {
 public:
  AdaptiveCongestionControl(base::TickClock* clock,
                            uint32 max_bitrate_configured,
                            uint32 min_bitrate_configured,
                            double max_frame_rate);

  ~AdaptiveCongestionControl() final;

  void UpdateRtt(base::TimeDelta rtt) final;

  void UpdateTargetPlayoutDelay(base::TimeDelta delay) final;

  // Called when an encoded frame is sent to the transport.
  void SendFrameToTransport(uint32 frame_id,
                            size_t frame_size_in_bits,
                            base::TimeTicks when) final;

  // Called when we receive an ACK for a frame.
  void AckFrame(uint32 frame_id, base::TimeTicks when) final;

  // Returns the bitrate we should use for the next frame.
  uint32 GetBitrate(base::TimeTicks playout_time,
                    base::TimeDelta playout_delay) final;

 private:
  struct FrameStats {
    FrameStats();
    // Time this frame was first enqueued for transport.
    base::TimeTicks enqueue_time;
    // Time this frame was acked.
    base::TimeTicks ack_time;
    // Size of encoded frame in bits.
    size_t frame_size_in_bits;
  };

  // Calculate how much "dead air" (idle time) there is between two frames.
  static base::TimeDelta DeadTime(const FrameStats& a, const FrameStats& b);
  // Get the FrameStats for a given |frame_id|.  Never returns nullptr.
  // Note: Older FrameStats will be removed automatically.
  FrameStats* GetFrameStats(uint32 frame_id);
  // Discard old FrameStats.
  void PruneFrameStats();
  // Calculate a safe bitrate. This is based on how much we've been
  // sending in the past.
  double CalculateSafeBitrate();

  // Estimate when the transport will start sending the data for a given frame.
  // |estimated_bitrate| is the current estimated transmit bitrate in bits per
  // second.
  base::TimeTicks EstimatedSendingTime(uint32 frame_id,
                                       double estimated_bitrate);

  base::TickClock* const clock_;  // Not owned by this class.
  const uint32 max_bitrate_configured_;
  const uint32 min_bitrate_configured_;
  const double max_frame_rate_;
  std::deque<FrameStats> frame_stats_;
  uint32 last_frame_stats_;
  uint32 last_acked_frame_;
  uint32 last_enqueued_frame_;
  base::TimeDelta rtt_;
  size_t history_size_;
  size_t acked_bits_in_history_;
  base::TimeDelta dead_time_in_history_;

  DISALLOW_COPY_AND_ASSIGN(AdaptiveCongestionControl);
};

class FixedCongestionControl : public CongestionControl {
 public:
  FixedCongestionControl(uint32 bitrate) : bitrate_(bitrate) {}
  ~FixedCongestionControl() final {}

  void UpdateRtt(base::TimeDelta rtt) final {}

  void UpdateTargetPlayoutDelay(base::TimeDelta delay) final {}

  // Called when an encoded frame is sent to the transport.
  void SendFrameToTransport(uint32 frame_id,
                            size_t frame_size_in_bits,
                            base::TimeTicks when) final {}

  // Called when we receive an ACK for a frame.
  void AckFrame(uint32 frame_id, base::TimeTicks when) final {}

  // Returns the bitrate we should use for the next frame.
  uint32 GetBitrate(base::TimeTicks playout_time,
                    base::TimeDelta playout_delay) final {
    return bitrate_;
  }

 private:
  uint32 bitrate_;
  DISALLOW_COPY_AND_ASSIGN(FixedCongestionControl);
};


CongestionControl* NewAdaptiveCongestionControl(
    base::TickClock* clock,
    uint32 max_bitrate_configured,
    uint32 min_bitrate_configured,
    double max_frame_rate) {
  return new AdaptiveCongestionControl(clock,
                                       max_bitrate_configured,
                                       min_bitrate_configured,
                                       max_frame_rate);
}

CongestionControl* NewFixedCongestionControl(uint32 bitrate) {
  return new FixedCongestionControl(bitrate);
}

// This means that we *try* to keep our buffer 90% empty.
// If it is less full, we increase the bandwidth, if it is more
// we decrease the bandwidth. Making this smaller makes the
// congestion control more aggressive.
static const double kTargetEmptyBufferFraction = 0.9;

// This is the size of our history in frames. Larger values makes the
// congestion control adapt slower.
static const size_t kHistorySize = 100;

AdaptiveCongestionControl::FrameStats::FrameStats() : frame_size_in_bits(0) {
}

AdaptiveCongestionControl::AdaptiveCongestionControl(
    base::TickClock* clock,
    uint32 max_bitrate_configured,
    uint32 min_bitrate_configured,
    double max_frame_rate)
    : clock_(clock),
      max_bitrate_configured_(max_bitrate_configured),
      min_bitrate_configured_(min_bitrate_configured),
      max_frame_rate_(max_frame_rate),
      last_frame_stats_(static_cast<uint32>(-1)),
      last_acked_frame_(static_cast<uint32>(-1)),
      last_enqueued_frame_(static_cast<uint32>(-1)),
      history_size_(kHistorySize),
      acked_bits_in_history_(0) {
  DCHECK_GE(max_bitrate_configured, min_bitrate_configured) << "Invalid config";
  frame_stats_.resize(2);
  base::TimeTicks now = clock->NowTicks();
  frame_stats_[0].ack_time = now;
  frame_stats_[0].enqueue_time = now;
  frame_stats_[1].ack_time = now;
  DCHECK(!frame_stats_[0].ack_time.is_null());
}

CongestionControl::~CongestionControl() {}
AdaptiveCongestionControl::~AdaptiveCongestionControl() {}

void AdaptiveCongestionControl::UpdateRtt(base::TimeDelta rtt) {
  rtt_ = (7 * rtt_ + rtt) / 8;
}

void AdaptiveCongestionControl::UpdateTargetPlayoutDelay(
    base::TimeDelta delay) {
  const int max_unacked_frames =
      std::min(kMaxUnackedFrames,
               1 + static_cast<int>(delay * max_frame_rate_ /
                                    base::TimeDelta::FromSeconds(1)));
  DCHECK_GT(max_unacked_frames, 0);
  history_size_ = max_unacked_frames + kHistorySize;
  PruneFrameStats();
}

// Calculate how much "dead air" there is between two frames.
base::TimeDelta AdaptiveCongestionControl::DeadTime(const FrameStats& a,
                                                    const FrameStats& b) {
  if (b.enqueue_time > a.ack_time) {
    return b.enqueue_time - a.ack_time;
  } else {
    return base::TimeDelta();
  }
}

double AdaptiveCongestionControl::CalculateSafeBitrate() {
  double transmit_time =
      (GetFrameStats(last_acked_frame_)->ack_time -
       frame_stats_.front().enqueue_time - dead_time_in_history_).InSecondsF();

  if (acked_bits_in_history_ == 0 || transmit_time <= 0.0) {
    return min_bitrate_configured_;
  }
  return acked_bits_in_history_ / std::max(transmit_time, 1E-3);
}

AdaptiveCongestionControl::FrameStats*
AdaptiveCongestionControl::GetFrameStats(uint32 frame_id) {
  int32 offset = static_cast<int32>(frame_id - last_frame_stats_);
  DCHECK_LT(offset, static_cast<int32>(kHistorySize));
  if (offset > 0) {
    frame_stats_.resize(frame_stats_.size() + offset);
    last_frame_stats_ += offset;
    offset = 0;
  }
  PruneFrameStats();
  offset += frame_stats_.size() - 1;
  // TODO(miu): Change the following to DCHECK once crash fix is confirmed.
  // http://crbug.com/517145
  CHECK(offset >= 0 && offset < static_cast<int32>(frame_stats_.size()));
  return &frame_stats_[offset];
}

void AdaptiveCongestionControl::PruneFrameStats() {
 while (frame_stats_.size() > history_size_) {
    DCHECK_GT(frame_stats_.size(), 1UL);
    DCHECK(!frame_stats_[0].ack_time.is_null());
    acked_bits_in_history_ -= frame_stats_[0].frame_size_in_bits;
    dead_time_in_history_ -= DeadTime(frame_stats_[0], frame_stats_[1]);
    DCHECK_GE(acked_bits_in_history_, 0UL);
    VLOG(2) << "DT: " << dead_time_in_history_.InSecondsF();
    DCHECK_GE(dead_time_in_history_.InSecondsF(), 0.0);
    frame_stats_.pop_front();
  }
}

void AdaptiveCongestionControl::AckFrame(uint32 frame_id,
                                         base::TimeTicks when) {
  FrameStats* frame_stats = GetFrameStats(last_acked_frame_);
  while (IsNewerFrameId(frame_id, last_acked_frame_)) {
    FrameStats* last_frame_stats = frame_stats;
    frame_stats = GetFrameStats(last_acked_frame_ + 1);
    if (frame_stats->enqueue_time.is_null()) {
      // Can't ack a frame that hasn't been sent yet.
      return;
    }
    last_acked_frame_++;
    if (when < frame_stats->enqueue_time)
      when = frame_stats->enqueue_time;

    frame_stats->ack_time = when;
    acked_bits_in_history_ += frame_stats->frame_size_in_bits;
    dead_time_in_history_ += DeadTime(*last_frame_stats, *frame_stats);
  }
}

void AdaptiveCongestionControl::SendFrameToTransport(uint32 frame_id,
                                                     size_t frame_size_in_bits,
                                                     base::TimeTicks when) {
  last_enqueued_frame_ = frame_id;
  FrameStats* frame_stats = GetFrameStats(frame_id);
  frame_stats->enqueue_time = when;
  frame_stats->frame_size_in_bits = frame_size_in_bits;
}

base::TimeTicks AdaptiveCongestionControl::EstimatedSendingTime(
    uint32 frame_id,
    double estimated_bitrate) {
  const base::TimeTicks now = clock_->NowTicks();

  // Starting with the time of the latest acknowledgement, extrapolate forward
  // to determine an estimated sending time for |frame_id|.
  //
  // |estimated_sending_time| will contain the estimated sending time for each
  // frame after the last ACK'ed frame.  It is possible for multiple frames to
  // be in-flight; and therefore it is common for the |estimated_sending_time|
  // for those frames to be before |now|.
  base::TimeTicks estimated_sending_time;
  for (uint32 f = last_acked_frame_; IsNewerFrameId(frame_id, f); ++f) {
    FrameStats* const stats = GetFrameStats(f);

    // |estimated_ack_time| is the local time when the sender receives the ACK,
    // and not the time when the ACK left the receiver.
    base::TimeTicks estimated_ack_time = stats->ack_time;

    // If |estimated_ack_time| is not null, then we already have the actual ACK
    // time, so we'll just use it.  Otherwise, we need to estimate when the ACK
    // will arrive.
    if (estimated_ack_time.is_null()) {
      // Model: The |estimated_sending_time| is the time at which the first byte
      // of the encoded frame is transmitted.  Then, assume the transmission of
      // the remaining bytes is paced such that the last byte has just left the
      // sender at |frame_transmit_time| later.  This last byte then takes
      // ~RTT/2 amount of time to travel to the receiver.  Finally, the ACK from
      // the receiver is sent and this takes another ~RTT/2 amount of time to
      // reach the sender.
      const base::TimeDelta frame_transmit_time =
          base::TimeDelta::FromSecondsD(stats->frame_size_in_bits /
                                            estimated_bitrate);
      estimated_ack_time =
          std::max(estimated_sending_time, stats->enqueue_time) +
              frame_transmit_time + rtt_;

      if (estimated_ack_time < now) {
        // The current frame has not yet been ACK'ed and the yet the computed
        // |estimated_ack_time| is before |now|.  This contradiction must be
        // resolved.
        //
        // The solution below is a little counter-intuitive, but it seems to
        // work.  Basically, when we estimate that the ACK should have already
        // happened, we figure out how long ago it should have happened and
        // guess that the ACK will happen half of that time in the future.  This
        // will cause some over-estimation when acks are late, which is actually
        // the desired behavior.
        estimated_ack_time = now + (now - estimated_ack_time) / 2;
      }
    }

    // Since we [in the common case] do not wait for an ACK before we start
    // sending the next frame, estimate the next frame's sending time as the
    // time just after the last byte of the current frame left the sender (see
    // Model comment above).
    estimated_sending_time =
        std::max(estimated_sending_time, estimated_ack_time - rtt_);
  }

  FrameStats* const frame_stats = GetFrameStats(frame_id);
  if (frame_stats->enqueue_time.is_null()) {
    // The frame has not yet been enqueued for transport.  Since it cannot be
    // enqueued in the past, ensure the result is lower-bounded by |now|.
    estimated_sending_time = std::max(estimated_sending_time, now);
  } else {
    // |frame_stats->enqueue_time| is the time the frame was enqueued for
    // transport.  The frame may not actually start being sent until a
    // point-in-time after that, because the transport is waiting for prior
    // frames to be acknowledged.
    estimated_sending_time =
        std::max(estimated_sending_time, frame_stats->enqueue_time);
  }

  return estimated_sending_time;
}

uint32 AdaptiveCongestionControl::GetBitrate(base::TimeTicks playout_time,
                                             base::TimeDelta playout_delay) {
  double safe_bitrate = CalculateSafeBitrate();
  // Estimate when we might start sending the next frame.
  base::TimeDelta time_to_catch_up =
      playout_time -
      EstimatedSendingTime(last_enqueued_frame_ + 1, safe_bitrate);

  double empty_buffer_fraction =
      time_to_catch_up.InSecondsF() / playout_delay.InSecondsF();
  empty_buffer_fraction = std::min(empty_buffer_fraction, 1.0);
  empty_buffer_fraction = std::max(empty_buffer_fraction, 0.0);

  uint32 bits_per_second = static_cast<uint32>(
      safe_bitrate * empty_buffer_fraction / kTargetEmptyBufferFraction);
  VLOG(3) << " FBR:" << (bits_per_second / 1E6)
          << " EBF:" << empty_buffer_fraction
          << " SBR:" << (safe_bitrate / 1E6);
  bits_per_second = std::max(bits_per_second, min_bitrate_configured_);
  bits_per_second = std::min(bits_per_second, max_bitrate_configured_);
  return bits_per_second;
}

}  // namespace cast
}  // namespace media