1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
|
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/cast/sender/h264_vt_encoder.h"
#include <stddef.h>
#include <string>
#include <vector>
#include "base/big_endian.h"
#include "base/bind.h"
#include "base/bind_helpers.h"
#include "base/location.h"
#include "base/logging.h"
#include "base/macros.h"
#include "base/power_monitor/power_monitor.h"
#include "base/synchronization/lock.h"
#include "build/build_config.h"
#include "media/base/mac/corevideo_glue.h"
#include "media/base/mac/video_frame_mac.h"
#include "media/cast/common/rtp_time.h"
#include "media/cast/constants.h"
#include "media/cast/sender/video_frame_factory.h"
namespace media {
namespace cast {
namespace {
// Container for the associated data of a video frame being processed.
struct InProgressFrameEncode {
const RtpTimeTicks rtp_timestamp;
const base::TimeTicks reference_time;
const VideoEncoder::FrameEncodedCallback frame_encoded_callback;
InProgressFrameEncode(RtpTimeTicks rtp,
base::TimeTicks r_time,
VideoEncoder::FrameEncodedCallback callback)
: rtp_timestamp(rtp),
reference_time(r_time),
frame_encoded_callback(callback) {}
};
base::ScopedCFTypeRef<CFDictionaryRef>
DictionaryWithKeysAndValues(CFTypeRef* keys, CFTypeRef* values, size_t size) {
return base::ScopedCFTypeRef<CFDictionaryRef>(CFDictionaryCreate(
kCFAllocatorDefault, keys, values, size, &kCFTypeDictionaryKeyCallBacks,
&kCFTypeDictionaryValueCallBacks));
}
base::ScopedCFTypeRef<CFDictionaryRef> DictionaryWithKeyValue(CFTypeRef key,
CFTypeRef value) {
CFTypeRef keys[1] = {key};
CFTypeRef values[1] = {value};
return DictionaryWithKeysAndValues(keys, values, 1);
}
base::ScopedCFTypeRef<CFArrayRef> ArrayWithIntegers(const int* v, size_t size) {
std::vector<CFNumberRef> numbers;
numbers.reserve(size);
for (const int* end = v + size; v < end; ++v)
numbers.push_back(CFNumberCreate(nullptr, kCFNumberSInt32Type, v));
base::ScopedCFTypeRef<CFArrayRef> array(CFArrayCreate(
kCFAllocatorDefault, reinterpret_cast<const void**>(&numbers[0]),
numbers.size(), &kCFTypeArrayCallBacks));
for (auto& number : numbers) {
CFRelease(number);
}
return array;
}
template <typename NalSizeType>
void CopyNalsToAnnexB(char* avcc_buffer,
const size_t avcc_size,
std::string* annexb_buffer) {
static_assert(sizeof(NalSizeType) == 1 || sizeof(NalSizeType) == 2 ||
sizeof(NalSizeType) == 4,
"NAL size type has unsupported size");
static const char startcode_3[3] = {0, 0, 1};
DCHECK(avcc_buffer);
DCHECK(annexb_buffer);
size_t bytes_left = avcc_size;
while (bytes_left > 0) {
DCHECK_GT(bytes_left, sizeof(NalSizeType));
NalSizeType nal_size;
base::ReadBigEndian(avcc_buffer, &nal_size);
bytes_left -= sizeof(NalSizeType);
avcc_buffer += sizeof(NalSizeType);
DCHECK_GE(bytes_left, nal_size);
annexb_buffer->append(startcode_3, sizeof(startcode_3));
annexb_buffer->append(avcc_buffer, nal_size);
bytes_left -= nal_size;
avcc_buffer += nal_size;
}
}
// Copy a H.264 frame stored in a CM sample buffer to an Annex B buffer. Copies
// parameter sets for keyframes before the frame data as well.
void CopySampleBufferToAnnexBBuffer(CoreMediaGlue::CMSampleBufferRef sbuf,
std::string* annexb_buffer,
bool keyframe) {
// Perform two pass, one to figure out the total output size, and another to
// copy the data after having performed a single output allocation. Note that
// we'll allocate a bit more because we'll count 4 bytes instead of 3 for
// video NALs.
OSStatus status;
// Get the sample buffer's block buffer and format description.
auto bb = CoreMediaGlue::CMSampleBufferGetDataBuffer(sbuf);
DCHECK(bb);
auto fdesc = CoreMediaGlue::CMSampleBufferGetFormatDescription(sbuf);
DCHECK(fdesc);
size_t bb_size = CoreMediaGlue::CMBlockBufferGetDataLength(bb);
size_t total_bytes = bb_size;
size_t pset_count;
int nal_size_field_bytes;
status = CoreMediaGlue::CMVideoFormatDescriptionGetH264ParameterSetAtIndex(
fdesc, 0, nullptr, nullptr, &pset_count, &nal_size_field_bytes);
if (status ==
CoreMediaGlue::kCMFormatDescriptionBridgeError_InvalidParameter) {
DLOG(WARNING) << " assuming 2 parameter sets and 4 bytes NAL length header";
pset_count = 2;
nal_size_field_bytes = 4;
} else if (status != noErr) {
DLOG(ERROR)
<< " CMVideoFormatDescriptionGetH264ParameterSetAtIndex failed: "
<< status;
return;
}
if (keyframe) {
const uint8_t* pset;
size_t pset_size;
for (size_t pset_i = 0; pset_i < pset_count; ++pset_i) {
status =
CoreMediaGlue::CMVideoFormatDescriptionGetH264ParameterSetAtIndex(
fdesc, pset_i, &pset, &pset_size, nullptr, nullptr);
if (status != noErr) {
DLOG(ERROR)
<< " CMVideoFormatDescriptionGetH264ParameterSetAtIndex failed: "
<< status;
return;
}
total_bytes += pset_size + nal_size_field_bytes;
}
}
annexb_buffer->reserve(total_bytes);
// Copy all parameter sets before keyframes.
if (keyframe) {
const uint8_t* pset;
size_t pset_size;
for (size_t pset_i = 0; pset_i < pset_count; ++pset_i) {
status =
CoreMediaGlue::CMVideoFormatDescriptionGetH264ParameterSetAtIndex(
fdesc, pset_i, &pset, &pset_size, nullptr, nullptr);
if (status != noErr) {
DLOG(ERROR)
<< " CMVideoFormatDescriptionGetH264ParameterSetAtIndex failed: "
<< status;
return;
}
static const char startcode_4[4] = {0, 0, 0, 1};
annexb_buffer->append(startcode_4, sizeof(startcode_4));
annexb_buffer->append(reinterpret_cast<const char*>(pset), pset_size);
}
}
// Block buffers can be composed of non-contiguous chunks. For the sake of
// keeping this code simple, flatten non-contiguous block buffers.
base::ScopedCFTypeRef<CoreMediaGlue::CMBlockBufferRef> contiguous_bb(
bb, base::scoped_policy::RETAIN);
if (!CoreMediaGlue::CMBlockBufferIsRangeContiguous(bb, 0, 0)) {
contiguous_bb.reset();
status = CoreMediaGlue::CMBlockBufferCreateContiguous(
kCFAllocatorDefault, bb, kCFAllocatorDefault, nullptr, 0, 0, 0,
contiguous_bb.InitializeInto());
if (status != noErr) {
DLOG(ERROR) << " CMBlockBufferCreateContiguous failed: " << status;
return;
}
}
// Copy all the NAL units. In the process convert them from AVCC format
// (length header) to AnnexB format (start code).
char* bb_data;
status = CoreMediaGlue::CMBlockBufferGetDataPointer(contiguous_bb, 0, nullptr,
nullptr, &bb_data);
if (status != noErr) {
DLOG(ERROR) << " CMBlockBufferGetDataPointer failed: " << status;
return;
}
if (nal_size_field_bytes == 1) {
CopyNalsToAnnexB<uint8_t>(bb_data, bb_size, annexb_buffer);
} else if (nal_size_field_bytes == 2) {
CopyNalsToAnnexB<uint16_t>(bb_data, bb_size, annexb_buffer);
} else if (nal_size_field_bytes == 4) {
CopyNalsToAnnexB<uint32_t>(bb_data, bb_size, annexb_buffer);
} else {
NOTREACHED();
}
}
} // namespace
class H264VideoToolboxEncoder::VideoFrameFactoryImpl
: public base::RefCountedThreadSafe<VideoFrameFactoryImpl>,
public VideoFrameFactory {
public:
// Type that proxies the VideoFrameFactory interface to this class.
class Proxy;
VideoFrameFactoryImpl(const base::WeakPtr<H264VideoToolboxEncoder>& encoder,
const scoped_refptr<CastEnvironment>& cast_environment)
: encoder_(encoder), cast_environment_(cast_environment) {}
scoped_refptr<VideoFrame> MaybeCreateFrame(
const gfx::Size& frame_size,
base::TimeDelta timestamp) final {
if (frame_size.IsEmpty()) {
DVLOG(1) << "Rejecting empty video frame.";
return nullptr;
}
base::AutoLock auto_lock(lock_);
// If the pool size does not match, speculatively reset the encoder to use
// the new size and return null. Cache the new frame size right away and
// toss away the pixel buffer pool to avoid spurious tasks until the encoder
// is done resetting.
if (frame_size != pool_frame_size_) {
DVLOG(1) << "MaybeCreateFrame: Detected frame size change.";
cast_environment_->PostTask(
CastEnvironment::MAIN, FROM_HERE,
base::Bind(&H264VideoToolboxEncoder::UpdateFrameSize, encoder_,
frame_size));
pool_frame_size_ = frame_size;
pool_.reset();
return nullptr;
}
if (!pool_) {
DVLOG(1) << "MaybeCreateFrame: No pixel buffer pool.";
return nullptr;
}
// Allocate a pixel buffer from the pool and return a wrapper VideoFrame.
base::ScopedCFTypeRef<CVPixelBufferRef> buffer;
auto status = CVPixelBufferPoolCreatePixelBuffer(kCFAllocatorDefault, pool_,
buffer.InitializeInto());
if (status != kCVReturnSuccess) {
DLOG(ERROR) << "CVPixelBufferPoolCreatePixelBuffer failed: " << status;
return nullptr;
}
DCHECK(buffer);
return VideoFrame::WrapCVPixelBuffer(buffer, timestamp);
}
void Update(const base::ScopedCFTypeRef<CVPixelBufferPoolRef>& pool,
const gfx::Size& frame_size) {
base::AutoLock auto_lock(lock_);
pool_ = pool;
pool_frame_size_ = frame_size;
}
private:
friend class base::RefCountedThreadSafe<VideoFrameFactoryImpl>;
~VideoFrameFactoryImpl() final {}
base::Lock lock_;
base::ScopedCFTypeRef<CVPixelBufferPoolRef> pool_;
gfx::Size pool_frame_size_;
// Weak back reference to the encoder and the cast envrionment so we can
// message the encoder when the frame size changes.
const base::WeakPtr<H264VideoToolboxEncoder> encoder_;
const scoped_refptr<CastEnvironment> cast_environment_;
DISALLOW_COPY_AND_ASSIGN(VideoFrameFactoryImpl);
};
class H264VideoToolboxEncoder::VideoFrameFactoryImpl::Proxy
: public VideoFrameFactory {
public:
explicit Proxy(
const scoped_refptr<VideoFrameFactoryImpl>& video_frame_factory)
: video_frame_factory_(video_frame_factory) {
DCHECK(video_frame_factory_);
}
scoped_refptr<VideoFrame> MaybeCreateFrame(
const gfx::Size& frame_size,
base::TimeDelta timestamp) final {
return video_frame_factory_->MaybeCreateFrame(frame_size, timestamp);
}
private:
~Proxy() final {}
const scoped_refptr<VideoFrameFactoryImpl> video_frame_factory_;
DISALLOW_COPY_AND_ASSIGN(Proxy);
};
// static
bool H264VideoToolboxEncoder::IsSupported(
const VideoSenderConfig& video_config) {
return video_config.codec == CODEC_VIDEO_H264 && VideoToolboxGlue::Get();
}
H264VideoToolboxEncoder::H264VideoToolboxEncoder(
const scoped_refptr<CastEnvironment>& cast_environment,
const VideoSenderConfig& video_config,
const StatusChangeCallback& status_change_cb)
: cast_environment_(cast_environment),
videotoolbox_glue_(VideoToolboxGlue::Get()),
video_config_(video_config),
status_change_cb_(status_change_cb),
last_frame_id_(kFirstFrameId - 1),
encode_next_frame_as_keyframe_(false),
power_suspended_(false),
weak_factory_(this) {
DCHECK(cast_environment_->CurrentlyOn(CastEnvironment::MAIN));
DCHECK(!status_change_cb_.is_null());
OperationalStatus operational_status =
H264VideoToolboxEncoder::IsSupported(video_config)
? STATUS_INITIALIZED
: STATUS_UNSUPPORTED_CODEC;
cast_environment_->PostTask(
CastEnvironment::MAIN, FROM_HERE,
base::Bind(status_change_cb_, operational_status));
if (operational_status == STATUS_INITIALIZED) {
// Create the shared video frame factory. It persists for the combined
// lifetime of the encoder and all video frame factory proxies created by
// |CreateVideoFrameFactory| that reference it.
video_frame_factory_ =
scoped_refptr<VideoFrameFactoryImpl>(new VideoFrameFactoryImpl(
weak_factory_.GetWeakPtr(), cast_environment_));
// Register for power state changes.
auto power_monitor = base::PowerMonitor::Get();
if (power_monitor) {
power_monitor->AddObserver(this);
VLOG(1) << "Registered for power state changes.";
} else {
DLOG(WARNING) << "No power monitor. Process suspension will invalidate "
"the encoder.";
}
}
}
H264VideoToolboxEncoder::~H264VideoToolboxEncoder() {
DestroyCompressionSession();
// If video_frame_factory_ is not null, the encoder registered for power state
// changes in the ctor and it must now unregister.
if (video_frame_factory_) {
auto power_monitor = base::PowerMonitor::Get();
if (power_monitor)
power_monitor->RemoveObserver(this);
}
}
void H264VideoToolboxEncoder::ResetCompressionSession() {
DCHECK(thread_checker_.CalledOnValidThread());
// Ignore reset requests while power suspended.
if (power_suspended_)
return;
// Notify that we're resetting the encoder.
cast_environment_->PostTask(
CastEnvironment::MAIN, FROM_HERE,
base::Bind(status_change_cb_, STATUS_CODEC_REINIT_PENDING));
// Destroy the current session, if any.
DestroyCompressionSession();
// On OS X, allow the hardware encoder. Don't require it, it does not support
// all configurations (some of which are used for testing).
base::ScopedCFTypeRef<CFDictionaryRef> encoder_spec;
#if !defined(OS_IOS)
encoder_spec = DictionaryWithKeyValue(
videotoolbox_glue_
->kVTVideoEncoderSpecification_EnableHardwareAcceleratedVideoEncoder(),
kCFBooleanTrue);
#endif
// Force 420v so that clients can easily use these buffers as GPU textures.
const int format[] = {
CoreVideoGlue::kCVPixelFormatType_420YpCbCr8BiPlanarVideoRange};
// Keep these attachment settings in-sync with those in ConfigureSession().
CFTypeRef attachments_keys[] = {kCVImageBufferColorPrimariesKey,
kCVImageBufferTransferFunctionKey,
kCVImageBufferYCbCrMatrixKey};
CFTypeRef attachments_values[] = {kCVImageBufferColorPrimaries_ITU_R_709_2,
kCVImageBufferTransferFunction_ITU_R_709_2,
kCVImageBufferYCbCrMatrix_ITU_R_709_2};
CFTypeRef buffer_attributes_keys[] = {kCVPixelBufferPixelFormatTypeKey,
kCVBufferPropagatedAttachmentsKey};
CFTypeRef buffer_attributes_values[] = {
ArrayWithIntegers(format, arraysize(format)).release(),
DictionaryWithKeysAndValues(attachments_keys, attachments_values,
arraysize(attachments_keys)).release()};
const base::ScopedCFTypeRef<CFDictionaryRef> buffer_attributes =
DictionaryWithKeysAndValues(buffer_attributes_keys,
buffer_attributes_values,
arraysize(buffer_attributes_keys));
for (auto& v : buffer_attributes_values)
CFRelease(v);
// Create the compression session.
// Note that the encoder object is given to the compression session as the
// callback context using a raw pointer. The C API does not allow us to use a
// smart pointer, nor is this encoder ref counted. However, this is still
// safe, because we 1) we own the compression session and 2) we tear it down
// safely. When destructing the encoder, the compression session is flushed
// and invalidated. Internally, VideoToolbox will join all of its threads
// before returning to the client. Therefore, when control returns to us, we
// are guaranteed that the output callback will not execute again.
OSStatus status = videotoolbox_glue_->VTCompressionSessionCreate(
kCFAllocatorDefault, frame_size_.width(), frame_size_.height(),
CoreMediaGlue::kCMVideoCodecType_H264, encoder_spec, buffer_attributes,
nullptr /* compressedDataAllocator */,
&H264VideoToolboxEncoder::CompressionCallback,
reinterpret_cast<void*>(this), compression_session_.InitializeInto());
if (status != noErr) {
DLOG(ERROR) << " VTCompressionSessionCreate failed: " << status;
// Notify that reinitialization has failed.
cast_environment_->PostTask(
CastEnvironment::MAIN, FROM_HERE,
base::Bind(status_change_cb_, STATUS_CODEC_INIT_FAILED));
return;
}
// Configure the session (apply session properties based on the current state
// of the encoder, experimental tuning and requirements).
ConfigureCompressionSession();
// Update the video frame factory.
base::ScopedCFTypeRef<CVPixelBufferPoolRef> pool(
videotoolbox_glue_->VTCompressionSessionGetPixelBufferPool(
compression_session_),
base::scoped_policy::RETAIN);
video_frame_factory_->Update(pool, frame_size_);
// Notify that reinitialization is done.
cast_environment_->PostTask(
CastEnvironment::MAIN, FROM_HERE,
base::Bind(status_change_cb_, STATUS_INITIALIZED));
}
void H264VideoToolboxEncoder::ConfigureCompressionSession() {
SetSessionProperty(
videotoolbox_glue_->kVTCompressionPropertyKey_ProfileLevel(),
videotoolbox_glue_->kVTProfileLevel_H264_Main_AutoLevel());
SetSessionProperty(videotoolbox_glue_->kVTCompressionPropertyKey_RealTime(),
true);
SetSessionProperty(
videotoolbox_glue_->kVTCompressionPropertyKey_AllowFrameReordering(),
false);
SetSessionProperty(
videotoolbox_glue_->kVTCompressionPropertyKey_MaxKeyFrameInterval(), 240);
SetSessionProperty(
videotoolbox_glue_
->kVTCompressionPropertyKey_MaxKeyFrameIntervalDuration(),
240);
// TODO(jfroy): implement better bitrate control
// https://crbug.com/425352
SetSessionProperty(
videotoolbox_glue_->kVTCompressionPropertyKey_AverageBitRate(),
(video_config_.min_bitrate + video_config_.max_bitrate) / 2);
SetSessionProperty(
videotoolbox_glue_->kVTCompressionPropertyKey_ExpectedFrameRate(),
video_config_.max_frame_rate);
// Keep these attachment settings in-sync with those in Initialize().
SetSessionProperty(
videotoolbox_glue_->kVTCompressionPropertyKey_ColorPrimaries(),
kCVImageBufferColorPrimaries_ITU_R_709_2);
SetSessionProperty(
videotoolbox_glue_->kVTCompressionPropertyKey_TransferFunction(),
kCVImageBufferTransferFunction_ITU_R_709_2);
SetSessionProperty(
videotoolbox_glue_->kVTCompressionPropertyKey_YCbCrMatrix(),
kCVImageBufferYCbCrMatrix_ITU_R_709_2);
if (video_config_.max_number_of_video_buffers_used > 0) {
SetSessionProperty(
videotoolbox_glue_->kVTCompressionPropertyKey_MaxFrameDelayCount(),
video_config_.max_number_of_video_buffers_used);
}
}
void H264VideoToolboxEncoder::DestroyCompressionSession() {
DCHECK(thread_checker_.CalledOnValidThread());
// If the compression session exists, invalidate it. This blocks until all
// pending output callbacks have returned and any internal threads have
// joined, ensuring no output callback ever sees a dangling encoder pointer.
//
// Before destroying the compression session, the video frame factory's pool
// is updated to null so that no thread will produce new video frames via the
// factory until a new compression session is created. The current frame size
// is passed to prevent the video frame factory from posting |UpdateFrameSize|
// tasks. Indeed, |DestroyCompressionSession| is either called from
// |ResetCompressionSession|, in which case a new pool and frame size will be
// set, or from callsites that require that there be no compression session
// (ex: the dtor).
if (compression_session_) {
video_frame_factory_->Update(
base::ScopedCFTypeRef<CVPixelBufferPoolRef>(nullptr), frame_size_);
videotoolbox_glue_->VTCompressionSessionInvalidate(compression_session_);
compression_session_.reset();
}
}
bool H264VideoToolboxEncoder::EncodeVideoFrame(
const scoped_refptr<media::VideoFrame>& video_frame,
const base::TimeTicks& reference_time,
const FrameEncodedCallback& frame_encoded_callback) {
DCHECK(thread_checker_.CalledOnValidThread());
DCHECK(!frame_encoded_callback.is_null());
// Reject empty video frames.
const gfx::Size frame_size = video_frame->visible_rect().size();
if (frame_size.IsEmpty()) {
DVLOG(1) << "Rejecting empty video frame.";
return false;
}
// Handle frame size changes. This will reset the compression session.
if (frame_size != frame_size_) {
DVLOG(1) << "EncodeVideoFrame: Detected frame size change.";
UpdateFrameSize(frame_size);
}
// Need a compression session to continue.
if (!compression_session_) {
DLOG(ERROR) << "No compression session.";
return false;
}
// Wrap the VideoFrame in a CVPixelBuffer. In all cases, no data will be
// copied. If the VideoFrame was created by this encoder's video frame
// factory, then the returned CVPixelBuffer will have been obtained from the
// compression session's pixel buffer pool. This will eliminate a copy of the
// frame into memory visible by the hardware encoder. The VideoFrame's
// lifetime is extended for the lifetime of the returned CVPixelBuffer.
auto pixel_buffer = media::WrapVideoFrameInCVPixelBuffer(*video_frame);
if (!pixel_buffer) {
DLOG(ERROR) << "WrapVideoFrameInCVPixelBuffer failed.";
return false;
}
// Convert the frame timestamp to CMTime.
auto timestamp_cm = CoreMediaGlue::CMTimeMake(
(reference_time - base::TimeTicks()).InMicroseconds(), USEC_PER_SEC);
// Wrap information we'll need after the frame is encoded in a heap object.
// We'll get the pointer back from the VideoToolbox completion callback.
scoped_ptr<InProgressFrameEncode> request(new InProgressFrameEncode(
RtpTimeTicks::FromTimeDelta(video_frame->timestamp(), kVideoFrequency),
reference_time, frame_encoded_callback));
// Build a suitable frame properties dictionary for keyframes.
base::ScopedCFTypeRef<CFDictionaryRef> frame_props;
if (encode_next_frame_as_keyframe_) {
frame_props = DictionaryWithKeyValue(
videotoolbox_glue_->kVTEncodeFrameOptionKey_ForceKeyFrame(),
kCFBooleanTrue);
encode_next_frame_as_keyframe_ = false;
}
// Submit the frame to the compression session. The function returns as soon
// as the frame has been enqueued.
OSStatus status = videotoolbox_glue_->VTCompressionSessionEncodeFrame(
compression_session_, pixel_buffer, timestamp_cm,
CoreMediaGlue::CMTime{0, 0, 0, 0}, frame_props,
reinterpret_cast<void*>(request.release()), nullptr);
if (status != noErr) {
DLOG(ERROR) << " VTCompressionSessionEncodeFrame failed: " << status;
return false;
}
return true;
}
void H264VideoToolboxEncoder::UpdateFrameSize(const gfx::Size& size_needed) {
DCHECK(thread_checker_.CalledOnValidThread());
// Our video frame factory posts a task to update the frame size when its
// cache of the frame size differs from what the client requested. To avoid
// spurious encoder resets, check again here.
if (size_needed == frame_size_) {
DCHECK(compression_session_);
return;
}
VLOG(1) << "Resetting compression session (for frame size change from "
<< frame_size_.ToString() << " to " << size_needed.ToString() << ").";
// If there is an existing session, finish every pending frame.
if (compression_session_) {
EmitFrames();
}
// Store the new frame size.
frame_size_ = size_needed;
// Reset the compression session.
ResetCompressionSession();
}
void H264VideoToolboxEncoder::SetBitRate(int /*new_bit_rate*/) {
DCHECK(thread_checker_.CalledOnValidThread());
// VideoToolbox does not seem to support bitrate reconfiguration.
}
void H264VideoToolboxEncoder::GenerateKeyFrame() {
DCHECK(thread_checker_.CalledOnValidThread());
encode_next_frame_as_keyframe_ = true;
}
scoped_ptr<VideoFrameFactory>
H264VideoToolboxEncoder::CreateVideoFrameFactory() {
DCHECK(thread_checker_.CalledOnValidThread());
return scoped_ptr<VideoFrameFactory>(
new VideoFrameFactoryImpl::Proxy(video_frame_factory_));
}
void H264VideoToolboxEncoder::EmitFrames() {
DCHECK(thread_checker_.CalledOnValidThread());
if (!compression_session_)
return;
OSStatus status = videotoolbox_glue_->VTCompressionSessionCompleteFrames(
compression_session_, CoreMediaGlue::CMTime{0, 0, 0, 0});
if (status != noErr) {
DLOG(ERROR) << " VTCompressionSessionCompleteFrames failed: " << status;
}
}
void H264VideoToolboxEncoder::OnSuspend() {
VLOG(1)
<< "OnSuspend: Emitting all frames and destroying compression session.";
EmitFrames();
DestroyCompressionSession();
power_suspended_ = true;
}
void H264VideoToolboxEncoder::OnResume() {
power_suspended_ = false;
// Reset the compression session only if the frame size is not zero (which
// will obviously fail). It is possible for the frame size to be zero if no
// frame was submitted for encoding or requested from the video frame factory
// before suspension.
if (!frame_size_.IsEmpty()) {
VLOG(1) << "OnResume: Resetting compression session.";
ResetCompressionSession();
}
}
bool H264VideoToolboxEncoder::SetSessionProperty(CFStringRef key,
int32_t value) {
base::ScopedCFTypeRef<CFNumberRef> cfvalue(
CFNumberCreate(nullptr, kCFNumberSInt32Type, &value));
return videotoolbox_glue_->VTSessionSetProperty(compression_session_, key,
cfvalue) == noErr;
}
bool H264VideoToolboxEncoder::SetSessionProperty(CFStringRef key, bool value) {
CFBooleanRef cfvalue = (value) ? kCFBooleanTrue : kCFBooleanFalse;
return videotoolbox_glue_->VTSessionSetProperty(compression_session_, key,
cfvalue) == noErr;
}
bool H264VideoToolboxEncoder::SetSessionProperty(CFStringRef key,
CFStringRef value) {
return videotoolbox_glue_->VTSessionSetProperty(compression_session_, key,
value) == noErr;
}
void H264VideoToolboxEncoder::CompressionCallback(void* encoder_opaque,
void* request_opaque,
OSStatus status,
VTEncodeInfoFlags info,
CMSampleBufferRef sbuf) {
auto encoder = reinterpret_cast<H264VideoToolboxEncoder*>(encoder_opaque);
const scoped_ptr<InProgressFrameEncode> request(
reinterpret_cast<InProgressFrameEncode*>(request_opaque));
bool keyframe = false;
bool has_frame_data = false;
if (status != noErr) {
DLOG(ERROR) << " encoding failed: " << status;
encoder->cast_environment_->PostTask(
CastEnvironment::MAIN, FROM_HERE,
base::Bind(encoder->status_change_cb_, STATUS_CODEC_RUNTIME_ERROR));
} else if ((info & VideoToolboxGlue::kVTEncodeInfo_FrameDropped)) {
DVLOG(2) << " frame dropped";
} else {
auto sample_attachments =
static_cast<CFDictionaryRef>(CFArrayGetValueAtIndex(
CoreMediaGlue::CMSampleBufferGetSampleAttachmentsArray(sbuf, true),
0));
// If the NotSync key is not present, it implies Sync, which indicates a
// keyframe (at least I think, VT documentation is, erm, sparse). Could
// alternatively use kCMSampleAttachmentKey_DependsOnOthers == false.
keyframe = !CFDictionaryContainsKey(
sample_attachments,
CoreMediaGlue::kCMSampleAttachmentKey_NotSync());
has_frame_data = true;
}
// Increment the encoder-scoped frame id and assign the new value to this
// frame. VideoToolbox calls the output callback serially, so this is safe.
const uint32_t frame_id = ++encoder->last_frame_id_;
scoped_ptr<SenderEncodedFrame> encoded_frame(new SenderEncodedFrame());
encoded_frame->frame_id = frame_id;
encoded_frame->reference_time = request->reference_time;
encoded_frame->rtp_timestamp = request->rtp_timestamp;
if (keyframe) {
encoded_frame->dependency = EncodedFrame::KEY;
encoded_frame->referenced_frame_id = frame_id;
} else {
encoded_frame->dependency = EncodedFrame::DEPENDENT;
// H.264 supports complex frame reference schemes (multiple reference
// frames, slice references, backward and forward references, etc). Cast
// doesn't support the concept of forward-referencing frame dependencies or
// multiple frame dependencies; so pretend that all frames are only
// decodable after their immediately preceding frame is decoded. This will
// ensure a Cast receiver only attempts to decode the frames sequentially
// and in order. Furthermore, the encoder is configured to never use forward
// references (see |kVTCompressionPropertyKey_AllowFrameReordering|). There
// is no way to prevent multiple reference frames.
encoded_frame->referenced_frame_id = frame_id - 1;
}
if (has_frame_data)
CopySampleBufferToAnnexBBuffer(sbuf, &encoded_frame->data, keyframe);
// TODO(miu): Compute and populate the |deadline_utilization| and
// |lossy_utilization| performance metrics in |encoded_frame|.
encoded_frame->encode_completion_time =
encoder->cast_environment_->Clock()->NowTicks();
encoder->cast_environment_->PostTask(
CastEnvironment::MAIN, FROM_HERE,
base::Bind(request->frame_encoded_callback,
base::Passed(&encoded_frame)));
}
} // namespace cast
} // namespace media
|