summaryrefslogtreecommitdiffstats
path: root/media/cast/sender/vp8_encoder.cc
blob: a9a4547f5b255ac9c10e82cb48d0b38035142968 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "media/cast/sender/vp8_encoder.h"

#include "base/debug/crash_logging.h"
#include "base/debug/dump_without_crashing.h"
#include "base/format_macros.h"
#include "base/logging.h"
#include "base/strings/stringprintf.h"
#include "media/base/video_frame.h"
#include "media/cast/cast_defines.h"
#include "media/cast/constants.h"
#include "third_party/libvpx_new/source/libvpx/vpx/vp8cx.h"

namespace media {
namespace cast {

namespace {

// After a pause in the video stream, what is the maximum duration amount to
// pass to the encoder for the next frame (in terms of 1/max_fps sized periods)?
// This essentially controls the encoded size of the first frame that follows a
// pause in the video stream.
const int kRestartFramePeriods = 3;

// The following constants are used to automactically tune the encoder
// parameters: |cpu_used| and |min_quantizer|.

// The |half-life| of the encoding speed accumulator.
// The smaller, the shorter of the time averaging window.
const int kEncodingSpeedAccHalfLife = 120000;  // 0.12 second.

// The target deadline utilization signal. This is a trade-off between quality
// and less CPU usage. The range of this value is [0, 1]. With the higher this
// value, the better quality and higher CPU usage. The typical range for cast
// streaming is [0.6, 0.7].
const double kTargetDeadlineUtilization = 0.7;

// This is the equivalent change on encoding speed for the change on each
// quantizer step.
const double kEquivalentEncodingSpeedStepPerQpStep = 1 / 20.0;

// Highest/lowest allowed encoding speed set to the encoder. The valid range
// is [4, 16]. Experiments show that with speed higher than 12, the saving of
// the encoding time is not worth the dropping of the quality. And with speed
// lower than 6, the increasing of quality is not worth the increasing of
// encoding time.
const int kHighestEncodingSpeed = 12;
const int kLowestEncodingSpeed = 6;

bool HasSufficientFeedback(const FeedbackSignalAccumulator& accumulator) {
  const base::TimeDelta amount_of_history =
      accumulator.update_time() - accumulator.reset_time();
  return amount_of_history.InMicroseconds() >= 250000;  // 0.25 second.
}

}  // namespace

Vp8Encoder::Vp8Encoder(const VideoSenderConfig& video_config)
    : cast_config_(video_config),
      key_frame_requested_(true),
      bitrate_kbit_(cast_config_.start_bitrate / 1000),
      last_encoded_frame_id_(kFirstFrameId - 1),
      has_seen_zero_length_encoded_frame_(false),
      encoding_speed_acc_(
          base::TimeDelta::FromMicroseconds(kEncodingSpeedAccHalfLife)),
      encoding_speed_(kHighestEncodingSpeed) {
  config_.g_timebase.den = 0;  // Not initialized.
  DCHECK_LE(cast_config_.min_qp, cast_config_.max_cpu_saver_qp);
  DCHECK_LE(cast_config_.max_cpu_saver_qp, cast_config_.max_qp);

  thread_checker_.DetachFromThread();
}

Vp8Encoder::~Vp8Encoder() {
  DCHECK(thread_checker_.CalledOnValidThread());
  if (is_initialized())
    vpx_codec_destroy(&encoder_);
}

void Vp8Encoder::Initialize() {
  DCHECK(thread_checker_.CalledOnValidThread());
  DCHECK(!is_initialized());
  // The encoder will be created/configured when the first frame encode is
  // requested.
}

void Vp8Encoder::ConfigureForNewFrameSize(const gfx::Size& frame_size) {
  if (is_initialized()) {
    // Workaround for VP8 bug: If the new size is strictly less-than-or-equal to
    // the old size, in terms of area, the existing encoder instance can
    // continue.  Otherwise, completely tear-down and re-create a new encoder to
    // avoid a shutdown crash.
    if (frame_size.GetArea() <= gfx::Size(config_.g_w, config_.g_h).GetArea()) {
      DVLOG(1) << "Continuing to use existing encoder at smaller frame size: "
               << gfx::Size(config_.g_w, config_.g_h).ToString() << " --> "
               << frame_size.ToString();
      config_.g_w = frame_size.width();
      config_.g_h = frame_size.height();
      config_.rc_min_quantizer = cast_config_.min_qp;
      if (vpx_codec_enc_config_set(&encoder_, &config_) == VPX_CODEC_OK)
        return;
      DVLOG(1) << "libvpx rejected the attempt to use a smaller frame size in "
                  "the current instance.";
    }

    DVLOG(1) << "Destroying/Re-Creating encoder for larger frame size: "
             << gfx::Size(config_.g_w, config_.g_h).ToString() << " --> "
             << frame_size.ToString();
    vpx_codec_destroy(&encoder_);
  } else {
    DVLOG(1) << "Creating encoder for the first frame; size: "
             << frame_size.ToString();
  }

  // Populate encoder configuration with default values.
  CHECK_EQ(vpx_codec_enc_config_default(vpx_codec_vp8_cx(), &config_, 0),
           VPX_CODEC_OK);

  config_.g_threads = cast_config_.number_of_encode_threads;
  config_.g_w = frame_size.width();
  config_.g_h = frame_size.height();
  // Set the timebase to match that of base::TimeDelta.
  config_.g_timebase.num = 1;
  config_.g_timebase.den = base::Time::kMicrosecondsPerSecond;

  // |g_pass| and |g_lag_in_frames| must be "one pass" and zero, respectively,
  // in order for VP8 to support changing frame sizes during encoding:
  config_.g_pass = VPX_RC_ONE_PASS;
  config_.g_lag_in_frames = 0;  // Immediate data output for each frame.

  // Rate control settings.
  config_.rc_dropframe_thresh = 0;  // The encoder may not drop any frames.
  config_.rc_resize_allowed = 0;  // TODO(miu): Why not?  Investigate this.
  config_.rc_end_usage = VPX_CBR;
  config_.rc_target_bitrate = bitrate_kbit_;
  config_.rc_min_quantizer = cast_config_.min_qp;
  config_.rc_max_quantizer = cast_config_.max_qp;
  // TODO(miu): Revisit these now that the encoder is being successfully
  // micro-managed.
  config_.rc_undershoot_pct = 100;
  config_.rc_overshoot_pct = 15;
  // TODO(miu): Document why these rc_buf_*_sz values were chosen and/or
  // research for better values.  Should they be computed from the target
  // playout delay?
  config_.rc_buf_initial_sz = 500;
  config_.rc_buf_optimal_sz = 600;
  config_.rc_buf_sz = 1000;

  config_.kf_mode = VPX_KF_DISABLED;

  vpx_codec_flags_t flags = 0;
  CHECK_EQ(vpx_codec_enc_init(&encoder_, vpx_codec_vp8_cx(), &config_, flags),
           VPX_CODEC_OK);

  // Raise the threshold for considering macroblocks as static.  The default is
  // zero, so this setting makes the encoder less sensitive to motion.  This
  // lowers the probability of needing to utilize more CPU to search for motion
  // vectors.
  CHECK_EQ(vpx_codec_control(&encoder_, VP8E_SET_STATIC_THRESHOLD, 1),
           VPX_CODEC_OK);

  // This cpu_used setting is a trade-off between cpu usage and encoded video
  // quality. The default is zero, with increasingly less CPU to be used as the
  // value is more negative or more positive. The encoder does some automatic
  // adjust on encoding speed for positive values, however at least at this
  // stage the experiments show that this automatic behaviour is not reliable on
  // windows machines. We choose to set negative values instead to directly set
  // the encoding speed to the encoder. Starting with the highest encoding speed
  // to avoid large cpu usage from the beginning.
  encoding_speed_ = kHighestEncodingSpeed;
  CHECK_EQ(vpx_codec_control(&encoder_, VP8E_SET_CPUUSED, -encoding_speed_),
           VPX_CODEC_OK);
}

void Vp8Encoder::Encode(const scoped_refptr<media::VideoFrame>& video_frame,
                        const base::TimeTicks& reference_time,
                        SenderEncodedFrame* encoded_frame) {
  DCHECK(thread_checker_.CalledOnValidThread());
  DCHECK(encoded_frame);

  // Note: This is used to compute the |deadline_utilization| and so it uses the
  // real-world clock instead of the CastEnvironment clock, the latter of which
  // might be simulated.
  const base::TimeTicks start_time = base::TimeTicks::Now();

  // Initialize on-demand.  Later, if the video frame size has changed, update
  // the encoder configuration.
  const gfx::Size frame_size = video_frame->visible_rect().size();
  if (!is_initialized() || gfx::Size(config_.g_w, config_.g_h) != frame_size)
    ConfigureForNewFrameSize(frame_size);

  // Wrapper for vpx_codec_encode() to access the YUV data in the |video_frame|.
  // Only the VISIBLE rectangle within |video_frame| is exposed to the codec.
  vpx_image_t vpx_image;
  vpx_image_t* const result = vpx_img_wrap(
      &vpx_image,
      VPX_IMG_FMT_I420,
      frame_size.width(),
      frame_size.height(),
      1,
      video_frame->data(VideoFrame::kYPlane));
  DCHECK_EQ(result, &vpx_image);
  vpx_image.planes[VPX_PLANE_Y] =
      video_frame->visible_data(VideoFrame::kYPlane);
  vpx_image.planes[VPX_PLANE_U] =
      video_frame->visible_data(VideoFrame::kUPlane);
  vpx_image.planes[VPX_PLANE_V] =
      video_frame->visible_data(VideoFrame::kVPlane);
  vpx_image.stride[VPX_PLANE_Y] = video_frame->stride(VideoFrame::kYPlane);
  vpx_image.stride[VPX_PLANE_U] = video_frame->stride(VideoFrame::kUPlane);
  vpx_image.stride[VPX_PLANE_V] = video_frame->stride(VideoFrame::kVPlane);

  // The frame duration given to the VP8 codec affects a number of important
  // behaviors, including: per-frame bandwidth, CPU time spent encoding,
  // temporal quality trade-offs, and key/golden/alt-ref frame generation
  // intervals.  Bound the prediction to account for the fact that the frame
  // rate can be highly variable, including long pauses in the video stream.
  const base::TimeDelta minimum_frame_duration =
      base::TimeDelta::FromSecondsD(1.0 / cast_config_.max_frame_rate);
  const base::TimeDelta maximum_frame_duration =
      base::TimeDelta::FromSecondsD(static_cast<double>(kRestartFramePeriods) /
                                        cast_config_.max_frame_rate);
  base::TimeDelta predicted_frame_duration;
  if (!video_frame->metadata()->GetTimeDelta(
          media::VideoFrameMetadata::FRAME_DURATION,
          &predicted_frame_duration) ||
      predicted_frame_duration <= base::TimeDelta()) {
    // The source of the video frame did not provide the frame duration.  Use
    // the actual amount of time between the current and previous frame as a
    // prediction for the next frame's duration.
    predicted_frame_duration = video_frame->timestamp() - last_frame_timestamp_;
  }
  predicted_frame_duration =
      std::max(minimum_frame_duration,
               std::min(maximum_frame_duration, predicted_frame_duration));
  last_frame_timestamp_ = video_frame->timestamp();

  // Encode the frame.  The presentation time stamp argument here is fixed to
  // zero to force the encoder to base its single-frame bandwidth calculations
  // entirely on |predicted_frame_duration| and the target bitrate setting being
  // micro-managed via calls to UpdateRates().
  CHECK_EQ(vpx_codec_encode(&encoder_, &vpx_image, 0,
                            predicted_frame_duration.InMicroseconds(),
                            key_frame_requested_ ? VPX_EFLAG_FORCE_KF : 0,
                            VPX_DL_REALTIME),
           VPX_CODEC_OK)
      << "BUG: Invalid arguments passed to vpx_codec_encode().";

  // Pull data from the encoder, populating a new EncodedFrame.
  encoded_frame->frame_id = ++last_encoded_frame_id_;
  const vpx_codec_cx_pkt_t* pkt = NULL;
  vpx_codec_iter_t iter = NULL;
  while ((pkt = vpx_codec_get_cx_data(&encoder_, &iter)) != NULL) {
    if (pkt->kind != VPX_CODEC_CX_FRAME_PKT)
      continue;
    if (pkt->data.frame.flags & VPX_FRAME_IS_KEY) {
      // TODO(hubbe): Replace "dependency" with a "bool is_key_frame".
      encoded_frame->dependency = EncodedFrame::KEY;
      encoded_frame->referenced_frame_id = encoded_frame->frame_id;
    } else {
      encoded_frame->dependency = EncodedFrame::DEPENDENT;
      // Frame dependencies could theoretically be relaxed by looking for the
      // VPX_FRAME_IS_DROPPABLE flag, but in recent testing (Oct 2014), this
      // flag never seems to be set.
      encoded_frame->referenced_frame_id = last_encoded_frame_id_ - 1;
    }
    encoded_frame->rtp_timestamp =
        RtpTimeTicks::FromTimeDelta(video_frame->timestamp(), kVideoFrequency);
    encoded_frame->reference_time = reference_time;
    encoded_frame->data.assign(
        static_cast<const uint8_t*>(pkt->data.frame.buf),
        static_cast<const uint8_t*>(pkt->data.frame.buf) + pkt->data.frame.sz);
    break;  // Done, since all data is provided in one CX_FRAME_PKT packet.
  }
  DCHECK(!encoded_frame->data.empty())
      << "BUG: Encoder must provide data since lagged encoding is disabled.";

  // TODO(miu): Determine when/why encoding can produce zero-length data,
  // which causes crypto crashes.  http://crbug.com/519022
  if (!has_seen_zero_length_encoded_frame_ && encoded_frame->data.empty()) {
    has_seen_zero_length_encoded_frame_ = true;

    const char kZeroEncodeDetails[] = "zero-encode-details";
    const std::string details = base::StringPrintf(
        "SV/%c,id=%" PRIu32 ",rtp=%" PRIu32 ",br=%d,kfr=%c",
        encoded_frame->dependency == EncodedFrame::KEY ? 'K' : 'D',
        encoded_frame->frame_id, encoded_frame->rtp_timestamp.lower_32_bits(),
        static_cast<int>(config_.rc_target_bitrate),
        key_frame_requested_ ? 'Y' : 'N');
    base::debug::SetCrashKeyValue(kZeroEncodeDetails, details);
    // Please forward crash reports to http://crbug.com/519022:
    base::debug::DumpWithoutCrashing();
    base::debug::ClearCrashKey(kZeroEncodeDetails);
  }

  // Compute deadline utilization as the real-world time elapsed divided by the
  // frame duration.
  const base::TimeDelta processing_time = base::TimeTicks::Now() - start_time;
  encoded_frame->deadline_utilization =
      processing_time.InSecondsF() / predicted_frame_duration.InSecondsF();

  // Compute lossy utilization.  The VP8 encoder took an estimated guess at what
  // quantizer value would produce an encoded frame size as close to the target
  // as possible.  Now that the frame has been encoded and the number of bytes
  // is known, the perfect quantizer value (i.e., the one that should have been
  // used) can be determined.  This perfect quantizer is then normalized and
  // used as the lossy utilization.
  const double actual_bitrate =
      encoded_frame->data.size() * 8.0 / predicted_frame_duration.InSecondsF();
  const double target_bitrate = 1000.0 * config_.rc_target_bitrate;
  DCHECK_GT(target_bitrate, 0.0);
  const double bitrate_utilization = actual_bitrate / target_bitrate;
  int quantizer = -1;
  CHECK_EQ(vpx_codec_control(&encoder_, VP8E_GET_LAST_QUANTIZER_64, &quantizer),
           VPX_CODEC_OK);
  const double perfect_quantizer = bitrate_utilization * std::max(0, quantizer);
  // Side note: If it was possible for the encoder to encode within the target
  // number of bytes, the |perfect_quantizer| will be in the range [0.0,63.0].
  // If it was never possible, the value will be greater than 63.0.
  encoded_frame->lossy_utilization = perfect_quantizer / 63.0;

  DVLOG(2) << "VP8 encoded frame_id " << encoded_frame->frame_id
           << ", sized: " << encoded_frame->data.size()
           << ", deadline_utilization: " << encoded_frame->deadline_utilization
           << ", lossy_utilization: " << encoded_frame->lossy_utilization
           << " (quantizer chosen by the encoder was " << quantizer << ')';

  if (encoded_frame->dependency == EncodedFrame::KEY) {
    key_frame_requested_ = false;
  }

  // This is not a true system clock value, but a "hack" needed in order to use
  // FeedbackSignalAccumulator.
  const base::TimeTicks current_time = base::TimeTicks() +
                                       base::TimeDelta::FromMilliseconds(10) +
                                       video_frame->timestamp();

  if (encoded_frame->dependency == EncodedFrame::KEY) {
    encoding_speed_acc_.Reset(kHighestEncodingSpeed, current_time);
  } else {
    // Equivalent encoding speed considering both cpu_used setting and
    // quantizer.
    double actual_encoding_speed =
        encoding_speed_ +
        kEquivalentEncodingSpeedStepPerQpStep *
            std::max(0, quantizer - cast_config_.min_qp);
    double adjusted_encoding_speed = actual_encoding_speed *
                                     encoded_frame->deadline_utilization /
                                     kTargetDeadlineUtilization;
    encoding_speed_acc_.Update(adjusted_encoding_speed, current_time);
  }

  if (HasSufficientFeedback(encoding_speed_acc_)) {
    // Predict |encoding_speed_| and |min_quantizer| for next frame.
    // When CPU is constrained, increase encoding speed and increase
    // |min_quantizer| if needed.
    double next_encoding_speed = encoding_speed_acc_.current();
    int next_min_qp;
    if (next_encoding_speed > kHighestEncodingSpeed) {
      double remainder = next_encoding_speed - kHighestEncodingSpeed;
      next_encoding_speed = kHighestEncodingSpeed;
      next_min_qp =
          static_cast<int>(remainder / kEquivalentEncodingSpeedStepPerQpStep +
                           cast_config_.min_qp + 0.5);
      next_min_qp = std::min(next_min_qp, cast_config_.max_cpu_saver_qp);
    } else {
      next_encoding_speed =
          std::max<double>(kLowestEncodingSpeed, next_encoding_speed) + 0.5;
      next_min_qp = cast_config_.min_qp;
    }
    if (encoding_speed_ != static_cast<int>(next_encoding_speed)) {
      encoding_speed_ = static_cast<int>(next_encoding_speed);
      CHECK_EQ(vpx_codec_control(&encoder_, VP8E_SET_CPUUSED, -encoding_speed_),
               VPX_CODEC_OK);
    }
    if (config_.rc_min_quantizer != static_cast<unsigned int>(next_min_qp)) {
      config_.rc_min_quantizer = static_cast<unsigned int>(next_min_qp);
      CHECK_EQ(vpx_codec_enc_config_set(&encoder_, &config_), VPX_CODEC_OK);
    }
  }
}

void Vp8Encoder::UpdateRates(uint32_t new_bitrate) {
  DCHECK(thread_checker_.CalledOnValidThread());

  if (!is_initialized())
    return;

  uint32_t new_bitrate_kbit = new_bitrate / 1000;
  if (config_.rc_target_bitrate == new_bitrate_kbit)
    return;

  config_.rc_target_bitrate = bitrate_kbit_ = new_bitrate_kbit;

  // Update encoder context.
  if (vpx_codec_enc_config_set(&encoder_, &config_)) {
    NOTREACHED() << "Invalid return value";
  }

  VLOG(1) << "VP8 new rc_target_bitrate: " << new_bitrate_kbit << " kbps";
}

void Vp8Encoder::GenerateKeyFrame() {
  DCHECK(thread_checker_.CalledOnValidThread());
  key_frame_requested_ = true;
}

}  // namespace cast
}  // namespace media