1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
|
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// This program benchmarks the theoretical throughput of the cast library.
// It runs using a fake clock, simulated network and fake codecs. This allows
// tests to run much faster than real time.
// To run the program, run:
// $ ./out/Release/cast_benchmarks | tee benchmarkoutput.asc
// This may take a while, when it is done, you can view the data with
// meshlab by running:
// $ meshlab benchmarkoutput.asc
// After starting meshlab, turn on Render->Show Axis. The red axis will
// represent bandwidth (in megabits) the blue axis will be packet drop
// (in percent) and the green axis will be latency (in milliseconds).
//
// This program can also be used for profiling. On linux it has
// built-in support for this. Simply set the environment variable
// PROFILE_FILE before running it, like so:
// $ export PROFILE_FILE=cast_benchmark.profile
// Then after running the program, you can view the profile with:
// $ pprof ./out/Release/cast_benchmarks $PROFILE_FILE --gv
#include <math.h>
#include <stddef.h>
#include <stdint.h>
#include <map>
#include <utility>
#include <vector>
#include "base/at_exit.h"
#include "base/bind.h"
#include "base/bind_helpers.h"
#include "base/command_line.h"
#include "base/debug/profiler.h"
#include "base/memory/weak_ptr.h"
#include "base/run_loop.h"
#include "base/stl_util.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/stringprintf.h"
#include "base/test/simple_test_tick_clock.h"
#include "base/threading/thread.h"
#include "base/time/tick_clock.h"
#include "media/base/audio_bus.h"
#include "media/base/video_frame.h"
#include "media/cast/cast_config.h"
#include "media/cast/cast_environment.h"
#include "media/cast/cast_receiver.h"
#include "media/cast/cast_sender.h"
#include "media/cast/logging/simple_event_subscriber.h"
#include "media/cast/net/cast_transport_config.h"
#include "media/cast/net/cast_transport_defines.h"
#include "media/cast/net/cast_transport_sender.h"
#include "media/cast/net/cast_transport_sender_impl.h"
#include "media/cast/test/fake_single_thread_task_runner.h"
#include "media/cast/test/loopback_transport.h"
#include "media/cast/test/skewed_single_thread_task_runner.h"
#include "media/cast/test/skewed_tick_clock.h"
#include "media/cast/test/utility/audio_utility.h"
#include "media/cast/test/utility/default_config.h"
#include "media/cast/test/utility/test_util.h"
#include "media/cast/test/utility/udp_proxy.h"
#include "media/cast/test/utility/video_utility.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace media {
namespace cast {
namespace {
static const int64_t kStartMillisecond = INT64_C(1245);
static const int kTargetPlayoutDelayMs = 400;
void UpdateCastTransportStatus(CastTransportStatus status) {
bool result = (status == TRANSPORT_AUDIO_INITIALIZED ||
status == TRANSPORT_VIDEO_INITIALIZED);
EXPECT_TRUE(result);
}
void ExpectVideoSuccess(OperationalStatus status) {
EXPECT_EQ(STATUS_INITIALIZED, status);
}
void ExpectAudioSuccess(OperationalStatus status) {
EXPECT_EQ(STATUS_INITIALIZED, status);
}
void IgnoreRawEvents(scoped_ptr<std::vector<FrameEvent>> frame_events,
scoped_ptr<std::vector<PacketEvent>> packet_events) {}
} // namespace
// Wraps a CastTransportSender and records some statistics about
// the data that goes through it.
class CastTransportSenderWrapper : public CastTransportSender {
public:
// Takes ownership of |transport|.
void Init(CastTransportSender* transport,
uint64_t* encoded_video_bytes,
uint64_t* encoded_audio_bytes) {
transport_.reset(transport);
encoded_video_bytes_ = encoded_video_bytes;
encoded_audio_bytes_ = encoded_audio_bytes;
}
void InitializeAudio(const CastTransportRtpConfig& config,
const RtcpCastMessageCallback& cast_message_cb,
const RtcpRttCallback& rtt_cb) final {
audio_ssrc_ = config.ssrc;
transport_->InitializeAudio(config, cast_message_cb, rtt_cb);
}
void InitializeVideo(const CastTransportRtpConfig& config,
const RtcpCastMessageCallback& cast_message_cb,
const RtcpRttCallback& rtt_cb) final {
video_ssrc_ = config.ssrc;
transport_->InitializeVideo(config, cast_message_cb, rtt_cb);
}
void InsertFrame(uint32_t ssrc, const EncodedFrame& frame) final {
if (ssrc == audio_ssrc_) {
*encoded_audio_bytes_ += frame.data.size();
} else if (ssrc == video_ssrc_) {
*encoded_video_bytes_ += frame.data.size();
}
transport_->InsertFrame(ssrc, frame);
}
void SendSenderReport(uint32_t ssrc,
base::TimeTicks current_time,
RtpTimeTicks current_time_as_rtp_timestamp) final {
transport_->SendSenderReport(ssrc,
current_time,
current_time_as_rtp_timestamp);
}
void CancelSendingFrames(uint32_t ssrc,
const std::vector<uint32_t>& frame_ids) final {
transport_->CancelSendingFrames(ssrc, frame_ids);
}
void ResendFrameForKickstart(uint32_t ssrc, uint32_t frame_id) final {
transport_->ResendFrameForKickstart(ssrc, frame_id);
}
PacketReceiverCallback PacketReceiverForTesting() final {
return transport_->PacketReceiverForTesting();
}
void AddValidSsrc(uint32_t ssrc) final {
return transport_->AddValidSsrc(ssrc);
}
void SendRtcpFromRtpReceiver(
uint32_t ssrc,
uint32_t sender_ssrc,
const RtcpTimeData& time_data,
const RtcpCastMessage* cast_message,
base::TimeDelta target_delay,
const ReceiverRtcpEventSubscriber::RtcpEvents* rtcp_events,
const RtpReceiverStatistics* rtp_receiver_statistics) final {
return transport_->SendRtcpFromRtpReceiver(ssrc,
sender_ssrc,
time_data,
cast_message,
target_delay,
rtcp_events,
rtp_receiver_statistics);
}
private:
scoped_ptr<CastTransportSender> transport_;
uint32_t audio_ssrc_, video_ssrc_;
uint64_t* encoded_video_bytes_;
uint64_t* encoded_audio_bytes_;
};
struct MeasuringPoint {
MeasuringPoint(double bitrate_, double latency_, double percent_packet_drop_)
: bitrate(bitrate_),
latency(latency_),
percent_packet_drop(percent_packet_drop_) {}
bool operator<=(const MeasuringPoint& other) const {
return bitrate >= other.bitrate && latency <= other.latency &&
percent_packet_drop <= other.percent_packet_drop;
}
bool operator>=(const MeasuringPoint& other) const {
return bitrate <= other.bitrate && latency >= other.latency &&
percent_packet_drop >= other.percent_packet_drop;
}
std::string AsString() const {
return base::StringPrintf(
"%f Mbit/s %f ms %f %% ", bitrate, latency, percent_packet_drop);
}
double bitrate;
double latency;
double percent_packet_drop;
};
class RunOneBenchmark {
public:
RunOneBenchmark()
: start_time_(),
task_runner_(new test::FakeSingleThreadTaskRunner(&testing_clock_)),
testing_clock_sender_(new test::SkewedTickClock(&testing_clock_)),
task_runner_sender_(
new test::SkewedSingleThreadTaskRunner(task_runner_)),
testing_clock_receiver_(new test::SkewedTickClock(&testing_clock_)),
task_runner_receiver_(
new test::SkewedSingleThreadTaskRunner(task_runner_)),
cast_environment_sender_(new CastEnvironment(
scoped_ptr<base::TickClock>(testing_clock_sender_),
task_runner_sender_,
task_runner_sender_,
task_runner_sender_)),
cast_environment_receiver_(new CastEnvironment(
scoped_ptr<base::TickClock>(testing_clock_receiver_),
task_runner_receiver_,
task_runner_receiver_,
task_runner_receiver_)),
receiver_to_sender_(cast_environment_receiver_),
sender_to_receiver_(cast_environment_sender_),
video_bytes_encoded_(0),
audio_bytes_encoded_(0),
frames_sent_(0) {
testing_clock_.Advance(
base::TimeDelta::FromMilliseconds(kStartMillisecond));
}
void Configure(Codec video_codec,
Codec audio_codec) {
audio_sender_config_ = GetDefaultAudioSenderConfig();
audio_sender_config_.min_playout_delay =
audio_sender_config_.max_playout_delay =
base::TimeDelta::FromMilliseconds(kTargetPlayoutDelayMs);
audio_sender_config_.codec = audio_codec;
audio_receiver_config_ = GetDefaultAudioReceiverConfig();
audio_receiver_config_.rtp_max_delay_ms =
audio_sender_config_.max_playout_delay.InMicroseconds();
audio_receiver_config_.codec = audio_codec;
video_sender_config_ = GetDefaultVideoSenderConfig();
video_sender_config_.min_playout_delay =
video_sender_config_.max_playout_delay =
base::TimeDelta::FromMilliseconds(kTargetPlayoutDelayMs);
video_sender_config_.max_bitrate = 4000000;
video_sender_config_.min_bitrate = 4000000;
video_sender_config_.start_bitrate = 4000000;
video_sender_config_.codec = video_codec;
video_receiver_config_ = GetDefaultVideoReceiverConfig();
video_receiver_config_.rtp_max_delay_ms = kTargetPlayoutDelayMs;
video_receiver_config_.codec = video_codec;
frame_duration_ = base::TimeDelta::FromSeconds(1) /
video_sender_config_.max_frame_rate;
}
void SetSenderClockSkew(double skew, base::TimeDelta offset) {
testing_clock_sender_->SetSkew(skew, offset);
task_runner_sender_->SetSkew(1.0 / skew);
}
void SetReceiverClockSkew(double skew, base::TimeDelta offset) {
testing_clock_receiver_->SetSkew(skew, offset);
task_runner_receiver_->SetSkew(1.0 / skew);
}
void Create(const MeasuringPoint& p) {
net::IPEndPoint dummy_endpoint;
transport_sender_.Init(
new CastTransportSenderImpl(
NULL,
testing_clock_sender_,
dummy_endpoint,
dummy_endpoint,
make_scoped_ptr(new base::DictionaryValue),
base::Bind(&UpdateCastTransportStatus),
base::Bind(&IgnoreRawEvents),
base::TimeDelta::FromSeconds(1),
task_runner_sender_,
PacketReceiverCallback(),
&sender_to_receiver_),
&video_bytes_encoded_,
&audio_bytes_encoded_);
transport_receiver_.reset(
new CastTransportSenderImpl(
NULL,
testing_clock_receiver_,
dummy_endpoint,
dummy_endpoint,
make_scoped_ptr(new base::DictionaryValue),
base::Bind(&UpdateCastTransportStatus),
base::Bind(&IgnoreRawEvents),
base::TimeDelta::FromSeconds(1),
task_runner_receiver_,
base::Bind(&RunOneBenchmark::ReceivePacket, base::Unretained(this)),
&receiver_to_sender_));
cast_receiver_ = CastReceiver::Create(cast_environment_receiver_,
audio_receiver_config_,
video_receiver_config_,
transport_receiver_.get());
cast_sender_ =
CastSender::Create(cast_environment_sender_, &transport_sender_);
cast_sender_->InitializeAudio(
audio_sender_config_,
base::Bind(&ExpectAudioSuccess));
cast_sender_->InitializeVideo(
video_sender_config_,
base::Bind(&ExpectVideoSuccess),
CreateDefaultVideoEncodeAcceleratorCallback(),
CreateDefaultVideoEncodeMemoryCallback());
receiver_to_sender_.Initialize(CreateSimplePipe(p),
transport_sender_.PacketReceiverForTesting(),
task_runner_, &testing_clock_);
sender_to_receiver_.Initialize(
CreateSimplePipe(p), transport_receiver_->PacketReceiverForTesting(),
task_runner_, &testing_clock_);
task_runner_->RunTasks();
}
void ReceivePacket(scoped_ptr<Packet> packet) {
cast_receiver_->ReceivePacket(std::move(packet));
}
virtual ~RunOneBenchmark() {
cast_sender_.reset();
cast_receiver_.reset();
task_runner_->RunTasks();
}
base::TimeDelta VideoTimestamp(int frame_number) {
return (frame_number * base::TimeDelta::FromSeconds(1)) /
video_sender_config_.max_frame_rate;
}
void SendFakeVideoFrame() {
// NB: Blackframe with timestamp
cast_sender_->video_frame_input()->InsertRawVideoFrame(
media::VideoFrame::CreateColorFrame(gfx::Size(2, 2),
0x00, 0x80, 0x80, VideoTimestamp(frames_sent_)),
testing_clock_sender_->NowTicks());
frames_sent_++;
}
void RunTasks(base::TimeDelta duration) {
task_runner_->Sleep(duration);
}
void BasicPlayerGotVideoFrame(
const scoped_refptr<media::VideoFrame>& video_frame,
const base::TimeTicks& render_time,
bool continuous) {
video_ticks_.push_back(
std::make_pair(testing_clock_receiver_->NowTicks(), render_time));
cast_receiver_->RequestDecodedVideoFrame(base::Bind(
&RunOneBenchmark::BasicPlayerGotVideoFrame, base::Unretained(this)));
}
void BasicPlayerGotAudioFrame(scoped_ptr<AudioBus> audio_bus,
const base::TimeTicks& playout_time,
bool is_continuous) {
audio_ticks_.push_back(
std::make_pair(testing_clock_receiver_->NowTicks(), playout_time));
cast_receiver_->RequestDecodedAudioFrame(base::Bind(
&RunOneBenchmark::BasicPlayerGotAudioFrame, base::Unretained(this)));
}
void StartBasicPlayer() {
cast_receiver_->RequestDecodedVideoFrame(base::Bind(
&RunOneBenchmark::BasicPlayerGotVideoFrame, base::Unretained(this)));
cast_receiver_->RequestDecodedAudioFrame(base::Bind(
&RunOneBenchmark::BasicPlayerGotAudioFrame, base::Unretained(this)));
}
scoped_ptr<test::PacketPipe> CreateSimplePipe(const MeasuringPoint& p) {
scoped_ptr<test::PacketPipe> pipe = test::NewBuffer(65536, p.bitrate);
pipe->AppendToPipe(test::NewRandomDrop(p.percent_packet_drop / 100.0));
pipe->AppendToPipe(test::NewConstantDelay(p.latency / 1000.0));
return pipe;
}
void Run(const MeasuringPoint& p) {
available_bitrate_ = p.bitrate;
Configure(CODEC_VIDEO_FAKE, CODEC_AUDIO_PCM16);
Create(p);
StartBasicPlayer();
for (int frame = 0; frame < 1000; frame++) {
SendFakeVideoFrame();
RunTasks(frame_duration_);
}
RunTasks(100 * frame_duration_); // Empty the pipeline.
VLOG(1) << "=============INPUTS============";
VLOG(1) << "Bitrate: " << p.bitrate << " mbit/s";
VLOG(1) << "Latency: " << p.latency << " ms";
VLOG(1) << "Packet drop drop: " << p.percent_packet_drop << "%";
VLOG(1) << "=============OUTPUTS============";
VLOG(1) << "Frames lost: " << frames_lost();
VLOG(1) << "Late frames: " << late_frames();
VLOG(1) << "Playout margin: " << frame_playout_buffer().AsString();
VLOG(1) << "Video bandwidth used: " << video_bandwidth() << " mbit/s ("
<< (video_bandwidth() * 100 / desired_video_bitrate()) << "%)";
VLOG(1) << "Good run: " << SimpleGood();
}
// Metrics
int frames_lost() const { return frames_sent_ - video_ticks_.size(); }
int late_frames() const {
int frames = 0;
// Ignore the first two seconds of video or so.
for (size_t i = 60; i < video_ticks_.size(); i++) {
if (video_ticks_[i].first > video_ticks_[i].second) {
frames++;
}
}
return frames;
}
test::MeanAndError frame_playout_buffer() const {
std::vector<double> values;
for (size_t i = 0; i < video_ticks_.size(); i++) {
values.push_back(
(video_ticks_[i].second - video_ticks_[i].first).InMillisecondsF());
}
return test::MeanAndError(values);
}
// Mbits per second
double video_bandwidth() const {
double seconds = (frame_duration_.InSecondsF() * frames_sent_);
double megabits = video_bytes_encoded_ * 8 / 1000000.0;
return megabits / seconds;
}
// Mbits per second
double audio_bandwidth() const {
double seconds = (frame_duration_.InSecondsF() * frames_sent_);
double megabits = audio_bytes_encoded_ * 8 / 1000000.0;
return megabits / seconds;
}
double desired_video_bitrate() {
return std::min<double>(available_bitrate_,
video_sender_config_.max_bitrate / 1000000.0);
}
bool SimpleGood() {
return frames_lost() <= 1 && late_frames() <= 1 &&
video_bandwidth() > desired_video_bitrate() * 0.8 &&
video_bandwidth() < desired_video_bitrate() * 1.2;
}
private:
FrameReceiverConfig audio_receiver_config_;
FrameReceiverConfig video_receiver_config_;
AudioSenderConfig audio_sender_config_;
VideoSenderConfig video_sender_config_;
base::TimeTicks start_time_;
// These run in "test time"
base::SimpleTestTickClock testing_clock_;
scoped_refptr<test::FakeSingleThreadTaskRunner> task_runner_;
// These run on the sender timeline.
test::SkewedTickClock* testing_clock_sender_;
scoped_refptr<test::SkewedSingleThreadTaskRunner> task_runner_sender_;
// These run on the receiver timeline.
test::SkewedTickClock* testing_clock_receiver_;
scoped_refptr<test::SkewedSingleThreadTaskRunner> task_runner_receiver_;
scoped_refptr<CastEnvironment> cast_environment_sender_;
scoped_refptr<CastEnvironment> cast_environment_receiver_;
LoopBackTransport receiver_to_sender_;
LoopBackTransport sender_to_receiver_;
CastTransportSenderWrapper transport_sender_;
scoped_ptr<CastTransportSender> transport_receiver_;
uint64_t video_bytes_encoded_;
uint64_t audio_bytes_encoded_;
scoped_ptr<CastReceiver> cast_receiver_;
scoped_ptr<CastSender> cast_sender_;
int frames_sent_;
base::TimeDelta frame_duration_;
double available_bitrate_;
std::vector<std::pair<base::TimeTicks, base::TimeTicks> > audio_ticks_;
std::vector<std::pair<base::TimeTicks, base::TimeTicks> > video_ticks_;
};
enum CacheResult { FOUND_TRUE, FOUND_FALSE, NOT_FOUND };
template <class T>
class BenchmarkCache {
public:
CacheResult Lookup(const T& x) {
base::AutoLock key(lock_);
for (size_t i = 0; i < results_.size(); i++) {
if (results_[i].second) {
if (x <= results_[i].first) {
VLOG(2) << "TRUE because: " << x.AsString()
<< " <= " << results_[i].first.AsString();
return FOUND_TRUE;
}
} else {
if (x >= results_[i].first) {
VLOG(2) << "FALSE because: " << x.AsString()
<< " >= " << results_[i].first.AsString();
return FOUND_FALSE;
}
}
}
return NOT_FOUND;
}
void Add(const T& x, bool result) {
base::AutoLock key(lock_);
VLOG(2) << "Cache Insert: " << x.AsString() << " = " << result;
results_.push_back(std::make_pair(x, result));
}
private:
base::Lock lock_;
std::vector<std::pair<T, bool> > results_;
};
struct SearchVariable {
SearchVariable() : base(0.0), grade(0.0) {}
SearchVariable(double b, double g) : base(b), grade(g) {}
SearchVariable blend(const SearchVariable& other, double factor) {
CHECK_GE(factor, 0);
CHECK_LE(factor, 1.0);
return SearchVariable(base * (1 - factor) + other.base * factor,
grade * (1 - factor) + other.grade * factor);
}
double value(double x) const { return base + grade * x; }
double base;
double grade;
};
struct SearchVector {
SearchVector blend(const SearchVector& other, double factor) {
SearchVector ret;
ret.bitrate = bitrate.blend(other.bitrate, factor);
ret.latency = latency.blend(other.latency, factor);
ret.packet_drop = packet_drop.blend(other.packet_drop, factor);
return ret;
}
SearchVector average(const SearchVector& other) {
return blend(other, 0.5);
}
MeasuringPoint GetMeasuringPoint(double v) const {
return MeasuringPoint(
bitrate.value(-v), latency.value(v), packet_drop.value(v));
}
std::string AsString(double v) { return GetMeasuringPoint(v).AsString(); }
SearchVariable bitrate;
SearchVariable latency;
SearchVariable packet_drop;
};
class CastBenchmark {
public:
bool RunOnePoint(const SearchVector& v, double multiplier) {
MeasuringPoint p = v.GetMeasuringPoint(multiplier);
VLOG(1) << "RUN: v = " << multiplier << " p = " << p.AsString();
if (p.bitrate <= 0) {
return false;
}
switch (cache_.Lookup(p)) {
case FOUND_TRUE:
return true;
case FOUND_FALSE:
return false;
case NOT_FOUND:
// Keep going
break;
}
bool result = true;
for (int tries = 0; tries < 3 && result; tries++) {
RunOneBenchmark benchmark;
benchmark.Run(p);
result &= benchmark.SimpleGood();
}
cache_.Add(p, result);
return result;
}
void BinarySearch(SearchVector v, double accuracy) {
double min = 0.0;
double max = 1.0;
while (RunOnePoint(v, max)) {
min = max;
max *= 2;
}
while (max - min > accuracy) {
double avg = (min + max) / 2;
if (RunOnePoint(v, avg)) {
min = avg;
} else {
max = avg;
}
}
// Print a data point to stdout.
base::AutoLock key(lock_);
MeasuringPoint p = v.GetMeasuringPoint(min);
fprintf(stdout, "%f %f %f\n", p.bitrate, p.latency, p.percent_packet_drop);
fflush(stdout);
}
void SpanningSearch(int max,
int x,
int y,
int skip,
SearchVector a,
SearchVector b,
SearchVector c,
double accuracy,
std::vector<linked_ptr<base::Thread> >* threads) {
static int thread_num = 0;
if (x > max) return;
if (skip > max) {
if (y > x) return;
SearchVector ab = a.blend(b, static_cast<double>(x) / max);
SearchVector ac = a.blend(c, static_cast<double>(x) / max);
SearchVector v = ab.blend(ac, x == y ? 1.0 : static_cast<double>(y) / x);
thread_num++;
(*threads)[thread_num % threads->size()]->message_loop()->PostTask(
FROM_HERE,
base::Bind(&CastBenchmark::BinarySearch,
base::Unretained(this),
v,
accuracy));
} else {
skip *= 2;
SpanningSearch(max, x, y, skip, a, b, c, accuracy, threads);
SpanningSearch(max, x + skip, y + skip, skip, a, b, c, accuracy, threads);
SpanningSearch(max, x + skip, y, skip, a, b, c, accuracy, threads);
SpanningSearch(max, x, y + skip, skip, a, b, c, accuracy, threads);
}
}
void Run() {
// Spanning search.
std::vector<linked_ptr<base::Thread> > threads;
for (int i = 0; i < 16; i++) {
threads.push_back(make_linked_ptr(new base::Thread(
base::StringPrintf("cast_bench_thread_%d", i))));
threads[i]->Start();
}
if (base::CommandLine::ForCurrentProcess()->HasSwitch("single-run")) {
SearchVector a;
a.bitrate.base = 100.0;
a.bitrate.grade = 1.0;
a.latency.grade = 1.0;
a.packet_drop.grade = 1.0;
threads[0]->message_loop()->PostTask(
FROM_HERE,
base::Bind(base::IgnoreResult(&CastBenchmark::RunOnePoint),
base::Unretained(this),
a,
1.0));
} else {
SearchVector a, b, c;
a.bitrate.base = b.bitrate.base = c.bitrate.base = 100.0;
a.bitrate.grade = 1.0;
b.latency.grade = 1.0;
c.packet_drop.grade = 1.0;
SpanningSearch(512,
0,
0,
1,
a,
b,
c,
0.01,
&threads);
}
for (size_t i = 0; i < threads.size(); i++) {
threads[i]->Stop();
}
}
private:
BenchmarkCache<MeasuringPoint> cache_;
base::Lock lock_;
};
} // namespace cast
} // namespace media
int main(int argc, char** argv) {
base::AtExitManager at_exit;
base::CommandLine::Init(argc, argv);
media::cast::CastBenchmark benchmark;
if (getenv("PROFILE_FILE")) {
std::string profile_file(getenv("PROFILE_FILE"));
base::debug::StartProfiling(profile_file);
benchmark.Run();
base::debug::StopProfiling();
} else {
benchmark.Run();
}
}
|