1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
|
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <errno.h>
#include <fcntl.h>
#include <linux/if_tun.h>
#include <linux/types.h>
#include <math.h>
#include <net/if.h>
#include <netinet/in.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <deque>
#include <map>
#include <utility>
#include "base/at_exit.h"
#include "base/bind.h"
#include "base/command_line.h"
#include "base/logging.h"
#include "base/rand_util.h"
#include "base/single_thread_task_runner.h"
#include "base/synchronization/waitable_event.h"
#include "base/thread_task_runner_handle.h"
#include "base/threading/thread.h"
#include "base/time/default_tick_clock.h"
#include "media/cast/test/utility/udp_proxy.h"
#include "net/base/io_buffer.h"
#include "net/base/net_errors.h"
#include "net/udp/udp_socket.h"
namespace media {
namespace cast {
namespace test {
const size_t kMaxPacketSize = 4096;
class SendToFDPipe : public PacketPipe {
public:
explicit SendToFDPipe(int fd) : fd_(fd) {
}
void Send(scoped_ptr<Packet> packet) final {
while (1) {
int written = write(
fd_,
reinterpret_cast<char*>(&packet->front()),
packet->size());
if (written < 0) {
if (errno == EINTR) continue;
perror("write");
exit(1);
}
if (written != static_cast<int>(packet->size())) {
fprintf(stderr, "Truncated write!\n");
exit(1);
}
break;
}
}
private:
int fd_;
};
class QueueManager : public base::MessageLoopForIO::Watcher {
public:
QueueManager(int input_fd, int output_fd, scoped_ptr<PacketPipe> pipe)
: input_fd_(input_fd), packet_pipe_(std::move(pipe)) {
CHECK(base::MessageLoopForIO::current()->WatchFileDescriptor(
input_fd_, true, base::MessageLoopForIO::WATCH_READ,
&read_socket_watcher_, this));
scoped_ptr<PacketPipe> tmp(new SendToFDPipe(output_fd));
if (packet_pipe_) {
packet_pipe_->AppendToPipe(std::move(tmp));
} else {
packet_pipe_ = std::move(tmp);
}
packet_pipe_->InitOnIOThread(base::ThreadTaskRunnerHandle::Get(),
&tick_clock_);
}
~QueueManager() final {}
// MessageLoopForIO::Watcher methods
void OnFileCanReadWithoutBlocking(int fd) final {
scoped_ptr<Packet> packet(new Packet(kMaxPacketSize));
int nread = read(input_fd_,
reinterpret_cast<char*>(&packet->front()),
kMaxPacketSize);
if (nread < 0) {
if (errno == EINTR) return;
perror("read");
exit(1);
}
if (nread == 0) return;
packet->resize(nread);
packet_pipe_->Send(std::move(packet));
}
void OnFileCanWriteWithoutBlocking(int fd) final { NOTREACHED(); }
private:
int input_fd_;
scoped_ptr<PacketPipe> packet_pipe_;
base::MessageLoopForIO::FileDescriptorWatcher read_socket_watcher_;
base::DefaultTickClock tick_clock_;
};
} // namespace test
} // namespace cast
} // namespace media
base::TimeTicks last_printout;
class ByteCounter {
public:
ByteCounter() : bytes_(0), packets_(0) {
push(base::TimeTicks::Now());
}
base::TimeDelta time_range() {
return time_data_.back() - time_data_.front();
}
void push(base::TimeTicks now) {
byte_data_.push_back(bytes_);
packet_data_.push_back(packets_);
time_data_.push_back(now);
while (time_range().InSeconds() > 10) {
byte_data_.pop_front();
packet_data_.pop_front();
time_data_.pop_front();
}
}
double megabits_per_second() {
double megabits = (byte_data_.back() - byte_data_.front()) * 8 / 1E6;
return megabits / time_range().InSecondsF();
}
double packets_per_second() {
double packets = packet_data_.back()- packet_data_.front();
return packets / time_range().InSecondsF();
}
void Increment(uint64_t x) {
bytes_ += x;
packets_ ++;
}
private:
uint64_t bytes_;
uint64_t packets_;
std::deque<uint64_t> byte_data_;
std::deque<uint64_t> packet_data_;
std::deque<base::TimeTicks> time_data_;
};
ByteCounter in_pipe_input_counter;
ByteCounter in_pipe_output_counter;
ByteCounter out_pipe_input_counter;
ByteCounter out_pipe_output_counter;
class ByteCounterPipe : public media::cast::test::PacketPipe {
public:
ByteCounterPipe(ByteCounter* counter) : counter_(counter) {}
void Send(scoped_ptr<media::cast::Packet> packet) final {
counter_->Increment(packet->size());
pipe_->Send(std::move(packet));
}
private:
ByteCounter* counter_;
};
void SetupByteCounters(scoped_ptr<media::cast::test::PacketPipe>* pipe,
ByteCounter* pipe_input_counter,
ByteCounter* pipe_output_counter) {
media::cast::test::PacketPipe* new_pipe =
new ByteCounterPipe(pipe_input_counter);
new_pipe->AppendToPipe(std::move(*pipe));
new_pipe->AppendToPipe(scoped_ptr<media::cast::test::PacketPipe>(
new ByteCounterPipe(pipe_output_counter)));
pipe->reset(new_pipe);
}
void CheckByteCounters() {
base::TimeTicks now = base::TimeTicks::Now();
in_pipe_input_counter.push(now);
in_pipe_output_counter.push(now);
out_pipe_input_counter.push(now);
out_pipe_output_counter.push(now);
if ((now - last_printout).InSeconds() >= 5) {
fprintf(stderr, "Sending : %5.2f / %5.2f mbps %6.2f / %6.2f packets / s\n",
in_pipe_output_counter.megabits_per_second(),
in_pipe_input_counter.megabits_per_second(),
in_pipe_output_counter.packets_per_second(),
in_pipe_input_counter.packets_per_second());
fprintf(stderr, "Receiving: %5.2f / %5.2f mbps %6.2f / %6.2f packets / s\n",
out_pipe_output_counter.megabits_per_second(),
out_pipe_input_counter.megabits_per_second(),
out_pipe_output_counter.packets_per_second(),
out_pipe_input_counter.packets_per_second());
last_printout = now;
}
base::ThreadTaskRunnerHandle::Get()->PostDelayedTask(
FROM_HERE,
base::Bind(&CheckByteCounters),
base::TimeDelta::FromMilliseconds(100));
}
int tun_alloc(char *dev, int flags) {
struct ifreq ifr;
int fd, err;
const char *clonedev = "/dev/net/tun";
/* Arguments taken by the function:
*
* char *dev: the name of an interface (or '\0'). MUST have enough
* space to hold the interface name if '\0' is passed
* int flags: interface flags (eg, IFF_TUN etc.)
*/
/* open the clone device */
if( (fd = open(clonedev, O_RDWR)) < 0 ) {
return fd;
}
/* preparation of the struct ifr, of type "struct ifreq" */
memset(&ifr, 0, sizeof(ifr));
ifr.ifr_flags = flags; /* IFF_TUN or IFF_TAP, plus maybe IFF_NO_PI */
if (*dev) {
/* if a device name was specified, put it in the structure; otherwise,
* the kernel will try to allocate the "next" device of the
* specified type */
strncpy(ifr.ifr_name, dev, IFNAMSIZ);
}
/* try to create the device */
if( (err = ioctl(fd, TUNSETIFF, (void *) &ifr)) < 0 ) {
close(fd);
return err;
}
if (!*dev) {
/* if the operation was successful, write back the name of the
* interface to the variable "dev", so the caller can know
* it. Note that the caller MUST reserve space in *dev (see calling
* code below) */
strcpy(dev, ifr.ifr_name);
}
/* this is the special file descriptor that the caller will use to talk
* with the virtual interface */
return fd;
}
int main(int argc, char **argv) {
base::AtExitManager exit_manager;
base::CommandLine::Init(argc, argv);
InitLogging(logging::LoggingSettings());
if (argc < 4) {
fprintf(stderr, "Usage: tap_proxy tap1 tap2 type\n");
fprintf(stderr,
"Where 'type' is one of perfect, good, wifi, bad or evil\n");
exit(1);
}
scoped_ptr<media::cast::test::PacketPipe> in_pipe, out_pipe;
std::string network_type = argv[3];
if (network_type == "perfect") {
// No action needed.
} else if (network_type == "good") {
in_pipe = media::cast::test::GoodNetwork();
out_pipe = media::cast::test::GoodNetwork();
} else if (network_type == "wifi") {
in_pipe = media::cast::test::WifiNetwork();
out_pipe = media::cast::test::WifiNetwork();
} else if (network_type == "bad") {
in_pipe = media::cast::test::BadNetwork();
out_pipe = media::cast::test::BadNetwork();
} else if (network_type == "evil") {
in_pipe = media::cast::test::EvilNetwork();
out_pipe = media::cast::test::EvilNetwork();
} else {
fprintf(stderr, "Unknown network type.\n");
exit(1);
}
SetupByteCounters(&in_pipe, &in_pipe_input_counter, &in_pipe_output_counter);
SetupByteCounters(
&out_pipe, &out_pipe_input_counter, &out_pipe_output_counter);
int fd1 = tun_alloc(argv[1], IFF_TAP);
int fd2 = tun_alloc(argv[2], IFF_TAP);
base::MessageLoopForIO message_loop;
last_printout = base::TimeTicks::Now();
media::cast::test::QueueManager qm1(fd1, fd2, std::move(in_pipe));
media::cast::test::QueueManager qm2(fd2, fd1, std::move(out_pipe));
CheckByteCounters();
printf("Press Ctrl-C when done.\n");
message_loop.Run();
}
|