summaryrefslogtreecommitdiffstats
path: root/media/crypto/aes_decryptor_unittest.cc
blob: abc7e6eb53c58e8b29d878f676bb3624043b8bdc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <string>
#include <vector>

#include "base/basictypes.h"
#include "base/bind.h"
#include "media/base/decoder_buffer.h"
#include "media/base/decrypt_config.h"
#include "media/base/mock_filters.h"
#include "media/crypto/aes_decryptor.h"
#include "media/webm/webm_constants.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"

using ::testing::_;
using ::testing::Gt;
using ::testing::IsNull;
using ::testing::NotNull;
using ::testing::SaveArg;
using ::testing::StrEq;
using ::testing::StrNe;

namespace media {

// |encrypted_data| is encrypted from |plain_text| using |key|. |key_id| is
// used to distinguish |key|.
struct WebmEncryptedData {
  uint8 plain_text[32];
  int plain_text_size;
  uint8 key_id[32];
  int key_id_size;
  uint8 key[32];
  int key_size;
  uint8 encrypted_data[64];
  int encrypted_data_size;
};

static const char kClearKeySystem[] = "org.w3.clearkey";

// Frames 0 & 1 are encrypted with the same key. Frame 2 is encrypted with a
// different key. Frame 3 is unencrypted.
const WebmEncryptedData kWebmEncryptedFrames[] = {
  {
    // plaintext
    "Original data.", 14,
    // key_id
    { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
      0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
      0x10, 0x11, 0x12, 0x13
      }, 20,
    // key
    { 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b,
      0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23
      }, 16,
    // encrypted_data
    { 0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
      0xff, 0xf0, 0xd1, 0x12, 0xd5, 0x24, 0x81, 0x96,
      0x55, 0x1b, 0x68, 0x9f, 0x38, 0x91, 0x85
      }, 23
  }, {
    // plaintext
    "Changed Original data.", 22,
    // key_id
    { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
      0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
      0x10, 0x11, 0x12, 0x13
      }, 20,
    // key
    { 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b,
      0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23
      }, 16,
    // encrypted_data
    { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
      0x00, 0x57, 0x66, 0xf4, 0x12, 0x1a, 0xed, 0xb5,
      0x79, 0x1c, 0x8e, 0x25, 0xd7, 0x17, 0xe7, 0x5e,
      0x16, 0xe3, 0x40, 0x08, 0x27, 0x11, 0xe9
      }, 31
  }, {
    // plaintext
    "Original data.", 14,
    // key_id
    { 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b,
      0x2c, 0x2d, 0x2e, 0x2f, 0x30
      }, 13,
    // key
    { 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38,
      0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, 0x40
      }, 16,
    // encrypted_data
    { 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
      0x00, 0x9c, 0x71, 0x26, 0x57, 0x3e, 0x25, 0x37,
      0xf7, 0x31, 0x81, 0x19, 0x64, 0xce, 0xbc
      }, 23
  }, {
    // plaintext
    "Changed Original data.", 22,
    // key_id
    { 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b,
      0x2c, 0x2d, 0x2e, 0x2f, 0x30
      }, 13,
    // key
    { 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38,
      0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, 0x40
      }, 16,
    // encrypted_data
    { 0x00, 0x43, 0x68, 0x61, 0x6e, 0x67, 0x65, 0x64,
      0x20, 0x4f, 0x72, 0x69, 0x67, 0x69, 0x6e, 0x61,
      0x6c, 0x20, 0x64, 0x61, 0x74, 0x61, 0x2e
      }, 23
  }
};

static const uint8 kWebmWrongSizedKey[] = { 0x20, 0x20 };

static const uint8 kSubsampleOriginalData[] = "Original subsample data.";
static const int kSubsampleOriginalDataSize = 24;

static const uint8 kSubsampleKeyId[] = { 0x00, 0x01, 0x02, 0x03 };

static const uint8 kSubsampleKey[] = {
  0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,
  0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13
};

static const uint8 kSubsampleIv[] = {
  0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};

static const uint8 kSubsampleData[] = {
  0x4f, 0x72, 0x09, 0x16, 0x09, 0xe6, 0x79, 0xad,
  0x70, 0x73, 0x75, 0x62, 0x09, 0xbb, 0x83, 0x1d,
  0x4d, 0x08, 0xd7, 0x78, 0xa4, 0xa7, 0xf1, 0x2e
};

static const uint8 kPaddedSubsampleData[] = {
  0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
  0x4f, 0x72, 0x09, 0x16, 0x09, 0xe6, 0x79, 0xad,
  0x70, 0x73, 0x75, 0x62, 0x09, 0xbb, 0x83, 0x1d,
  0x4d, 0x08, 0xd7, 0x78, 0xa4, 0xa7, 0xf1, 0x2e
};

// Encrypted with kSubsampleKey and kSubsampleIv but without subsamples.
static const uint8 kNoSubsampleData[] = {
  0x2f, 0x03, 0x09, 0xef, 0x71, 0xaf, 0x31, 0x16,
  0xfa, 0x9d, 0x18, 0x43, 0x1e, 0x96, 0x71, 0xb5,
  0xbf, 0xf5, 0x30, 0x53, 0x9a, 0x20, 0xdf, 0x95
};

static const SubsampleEntry kSubsampleEntries[] = {
  { 2, 7 },
  { 3, 11 },
  { 1, 0 }
};

// Generates a 16 byte CTR counter block. The CTR counter block format is a
// CTR IV appended with a CTR block counter. |iv| is an 8 byte CTR IV.
// |iv_size| is the size of |iv| in btyes. Returns a string of
// kDecryptionKeySize bytes.
static std::string GenerateCounterBlock(const uint8* iv, int iv_size) {
  CHECK_GT(iv_size, 0);
  CHECK_LE(iv_size, DecryptConfig::kDecryptionKeySize);

  std::string counter_block(reinterpret_cast<const char*>(iv), iv_size);
  counter_block.append(DecryptConfig::kDecryptionKeySize - iv_size, 0);
  return counter_block;
}

// Creates a WebM encrypted buffer that the demuxer would pass to the
// decryptor. |data| is the payload of a WebM encrypted Block. |key_id| is
// initialization data from the WebM file. Every encrypted Block has
// a signal byte prepended to a frame. If the frame is encrypted then an IV is
// prepended to the Block. Current encrypted WebM request for comments
// specification is here
// http://wiki.webmproject.org/encryption/webm-encryption-rfc
static scoped_refptr<DecoderBuffer> CreateWebMEncryptedBuffer(
    const uint8* data, int data_size,
    const uint8* key_id, int key_id_size) {
  scoped_refptr<DecoderBuffer> encrypted_buffer = DecoderBuffer::CopyFrom(
      data, data_size);
  CHECK(encrypted_buffer);
  DCHECK_EQ(kWebMSignalByteSize, 1);

  uint8 signal_byte = data[0];
  int data_offset = kWebMSignalByteSize;

  // Setting the DecryptConfig object of the buffer while leaving the
  // initialization vector empty will tell the decryptor that the frame is
  // unencrypted.
  std::string counter_block_str;

  if (signal_byte & kWebMFlagEncryptedFrame) {
    counter_block_str = GenerateCounterBlock(data + data_offset, kWebMIvSize);
    data_offset += kWebMIvSize;
  }

  encrypted_buffer->SetDecryptConfig(
      scoped_ptr<DecryptConfig>(new DecryptConfig(
          std::string(reinterpret_cast<const char*>(key_id), key_id_size),
          counter_block_str,
          data_offset,
          std::vector<SubsampleEntry>())));
  return encrypted_buffer;
}

static scoped_refptr<DecoderBuffer> CreateSubsampleEncryptedBuffer(
    const uint8* data, int data_size,
    const uint8* key_id, int key_id_size,
    const uint8* iv, int iv_size,
    int data_offset,
    const std::vector<SubsampleEntry>& subsample_entries) {
  scoped_refptr<DecoderBuffer> encrypted_buffer =
      DecoderBuffer::CopyFrom(data, data_size);
  CHECK(encrypted_buffer);
  encrypted_buffer->SetDecryptConfig(
      scoped_ptr<DecryptConfig>(new DecryptConfig(
          std::string(reinterpret_cast<const char*>(key_id), key_id_size),
          std::string(reinterpret_cast<const char*>(iv), iv_size),
          data_offset,
          subsample_entries)));
  return encrypted_buffer;
}

class AesDecryptorTest : public testing::Test {
 public:
  AesDecryptorTest()
      : decryptor_(
            base::Bind(&AesDecryptorTest::KeyAdded, base::Unretained(this)),
            base::Bind(&AesDecryptorTest::KeyError, base::Unretained(this)),
            base::Bind(&AesDecryptorTest::KeyMessage, base::Unretained(this)),
            NeedKeyCB()),
        decrypt_cb_(base::Bind(&AesDecryptorTest::BufferDecrypted,
                               base::Unretained(this))),
        subsample_entries_(kSubsampleEntries,
                           kSubsampleEntries + arraysize(kSubsampleEntries)) {
  }

 protected:
  void GenerateKeyRequest(const uint8* key_id, int key_id_size) {
    std::string key_id_string(reinterpret_cast<const char*>(key_id),
                              key_id_size);
    EXPECT_CALL(
        *this,
        KeyMessage(
            kClearKeySystem, StrNe(std::string()), StrEq(key_id_string), ""))
        .WillOnce(SaveArg<1>(&session_id_string_));
    EXPECT_TRUE(decryptor_.GenerateKeyRequest(
        kClearKeySystem, std::string(), key_id, key_id_size));
  }

  void AddKeyAndExpectToSucceed(const uint8* key_id, int key_id_size,
                                const uint8* key, int key_size) {
    EXPECT_CALL(*this, KeyAdded(kClearKeySystem, session_id_string_));
    decryptor_.AddKey(kClearKeySystem, key, key_size, key_id, key_id_size,
                      session_id_string_);
  }

  void AddKeyAndExpectToFail(const uint8* key_id, int key_id_size,
                             const uint8* key, int key_size) {
    EXPECT_CALL(*this, KeyError(kClearKeySystem, session_id_string_,
                                Decryptor::kUnknownError, 0));
    decryptor_.AddKey(kClearKeySystem, key, key_size, key_id, key_id_size,
                      session_id_string_);
  }

  MOCK_METHOD2(BufferDecrypted, void(Decryptor::Status,
                                     const scoped_refptr<DecoderBuffer>&));

  void DecryptAndExpectToSucceed(const scoped_refptr<DecoderBuffer>& encrypted,
                                 const uint8* plain_text, int plain_text_size) {
    scoped_refptr<DecoderBuffer> decrypted;
    EXPECT_CALL(*this, BufferDecrypted(AesDecryptor::kSuccess, NotNull()))
        .WillOnce(SaveArg<1>(&decrypted));

    decryptor_.Decrypt(Decryptor::kVideo, encrypted, decrypt_cb_);
    ASSERT_TRUE(decrypted);
    ASSERT_EQ(plain_text_size, decrypted->GetDataSize());
    EXPECT_EQ(0, memcmp(plain_text, decrypted->GetData(), plain_text_size));
  }

  void DecryptAndExpectDataMismatch(
        const scoped_refptr<DecoderBuffer>& encrypted,
        const uint8* plain_text, int plain_text_size) {
    scoped_refptr<DecoderBuffer> decrypted;
    EXPECT_CALL(*this, BufferDecrypted(AesDecryptor::kSuccess, NotNull()))
        .WillOnce(SaveArg<1>(&decrypted));

    decryptor_.Decrypt(Decryptor::kVideo, encrypted, decrypt_cb_);
    ASSERT_TRUE(decrypted);
    ASSERT_EQ(plain_text_size, decrypted->GetDataSize());
    EXPECT_NE(0, memcmp(plain_text, decrypted->GetData(), plain_text_size));
  }

  void DecryptAndExpectSizeDataMismatch(
        const scoped_refptr<DecoderBuffer>& encrypted,
        const uint8* plain_text, int plain_text_size) {
    scoped_refptr<DecoderBuffer> decrypted;
    EXPECT_CALL(*this, BufferDecrypted(AesDecryptor::kSuccess, NotNull()))
        .WillOnce(SaveArg<1>(&decrypted));

    decryptor_.Decrypt(Decryptor::kVideo, encrypted, decrypt_cb_);
    ASSERT_TRUE(decrypted);
    EXPECT_NE(plain_text_size, decrypted->GetDataSize());
    EXPECT_NE(0, memcmp(plain_text, decrypted->GetData(), plain_text_size));
  }

  void DecryptAndExpectToFail(const scoped_refptr<DecoderBuffer>& encrypted) {
    EXPECT_CALL(*this, BufferDecrypted(AesDecryptor::kError, IsNull()));
    decryptor_.Decrypt(Decryptor::kVideo, encrypted, decrypt_cb_);
  }

  MOCK_METHOD2(KeyAdded, void(const std::string&, const std::string&));
  MOCK_METHOD4(KeyError, void(const std::string&, const std::string&,
                              Decryptor::KeyError, int));
  MOCK_METHOD4(KeyMessage, void(const std::string& key_system,
                                const std::string& session_id,
                                const std::string& message,
                                const std::string& default_url));

  AesDecryptor decryptor_;
  std::string session_id_string_;
  AesDecryptor::DecryptCB decrypt_cb_;
  std::vector<SubsampleEntry> subsample_entries_;
};

TEST_F(AesDecryptorTest, GenerateKeyRequestWithNullInitData) {
  EXPECT_CALL(*this, KeyMessage(kClearKeySystem, StrNe(std::string()), "", ""));
  EXPECT_TRUE(
      decryptor_.GenerateKeyRequest(kClearKeySystem, std::string(), NULL, 0));
}

TEST_F(AesDecryptorTest, NormalWebMDecryption) {
  const WebmEncryptedData& frame = kWebmEncryptedFrames[0];
  GenerateKeyRequest(frame.key_id, frame.key_id_size);
  AddKeyAndExpectToSucceed(frame.key_id, frame.key_id_size,
                           frame.key, frame.key_size);
  scoped_refptr<DecoderBuffer> encrypted_data =
      CreateWebMEncryptedBuffer(frame.encrypted_data,
                                frame.encrypted_data_size,
                                frame.key_id, frame.key_id_size);
  ASSERT_NO_FATAL_FAILURE(DecryptAndExpectToSucceed(encrypted_data,
                                                    frame.plain_text,
                                                    frame.plain_text_size));
}

TEST_F(AesDecryptorTest, UnencryptedFrameWebMDecryption) {
  const WebmEncryptedData& frame = kWebmEncryptedFrames[3];
  GenerateKeyRequest(frame.key_id, frame.key_id_size);
  AddKeyAndExpectToSucceed(frame.key_id, frame.key_id_size,
                           frame.key, frame.key_size);
  scoped_refptr<DecoderBuffer> encrypted_data =
      CreateWebMEncryptedBuffer(frame.encrypted_data,
                                frame.encrypted_data_size,
                                frame.key_id, frame.key_id_size);
  ASSERT_NO_FATAL_FAILURE(DecryptAndExpectToSucceed(encrypted_data,
                                                    frame.plain_text,
                                                    frame.plain_text_size));
}

TEST_F(AesDecryptorTest, WrongKey) {
  const WebmEncryptedData& frame = kWebmEncryptedFrames[0];
  GenerateKeyRequest(frame.key_id, frame.key_id_size);

  // Change the first byte of the key.
  std::vector<uint8> wrong_key(frame.key, frame.key + frame.key_size);
  wrong_key[0]++;

  AddKeyAndExpectToSucceed(frame.key_id, frame.key_id_size,
                           &wrong_key[0], frame.key_size);
  scoped_refptr<DecoderBuffer> encrypted_data =
      CreateWebMEncryptedBuffer(frame.encrypted_data,
                                frame.encrypted_data_size,
                                frame.key_id, frame.key_id_size);
  ASSERT_NO_FATAL_FAILURE(DecryptAndExpectDataMismatch(encrypted_data,
                                                       frame.plain_text,
                                                       frame.plain_text_size));
}

TEST_F(AesDecryptorTest, NoKey) {
  const WebmEncryptedData& frame = kWebmEncryptedFrames[0];
  GenerateKeyRequest(frame.key_id, frame.key_id_size);

  scoped_refptr<DecoderBuffer> encrypted_data =
      CreateWebMEncryptedBuffer(frame.encrypted_data, frame.encrypted_data_size,
                                frame.key_id, frame.key_id_size);
  EXPECT_CALL(*this, BufferDecrypted(AesDecryptor::kNoKey, IsNull()));
  decryptor_.Decrypt(Decryptor::kVideo, encrypted_data, decrypt_cb_);
}

TEST_F(AesDecryptorTest, KeyReplacement) {
  const WebmEncryptedData& frame = kWebmEncryptedFrames[0];
  GenerateKeyRequest(frame.key_id, frame.key_id_size);

  // Change the first byte of the key.
  std::vector<uint8> wrong_key(frame.key, frame.key + frame.key_size);
  wrong_key[0]++;

  AddKeyAndExpectToSucceed(frame.key_id, frame.key_id_size,
                           &wrong_key[0], frame.key_size);
  scoped_refptr<DecoderBuffer> encrypted_data =
      CreateWebMEncryptedBuffer(frame.encrypted_data,
                                frame.encrypted_data_size,
                                frame.key_id, frame.key_id_size);
  ASSERT_NO_FATAL_FAILURE(DecryptAndExpectDataMismatch(encrypted_data,
                                                       frame.plain_text,
                                                       frame.plain_text_size));
  AddKeyAndExpectToSucceed(frame.key_id, frame.key_id_size,
                           frame.key, frame.key_size);
  ASSERT_NO_FATAL_FAILURE(DecryptAndExpectToSucceed(encrypted_data,
                                                    frame.plain_text,
                                                    frame.plain_text_size));
}

TEST_F(AesDecryptorTest, WrongSizedKey) {
  const WebmEncryptedData& frame = kWebmEncryptedFrames[0];
  GenerateKeyRequest(frame.key_id, frame.key_id_size);
  AddKeyAndExpectToFail(frame.key_id, frame.key_id_size,
                        kWebmWrongSizedKey, arraysize(kWebmWrongSizedKey));
}

TEST_F(AesDecryptorTest, MultipleKeysAndFrames) {
  const WebmEncryptedData& frame = kWebmEncryptedFrames[0];
  GenerateKeyRequest(frame.key_id, frame.key_id_size);
  AddKeyAndExpectToSucceed(frame.key_id, frame.key_id_size,
                           frame.key, frame.key_size);
  scoped_refptr<DecoderBuffer> encrypted_data =
      CreateWebMEncryptedBuffer(frame.encrypted_data,
                                frame.encrypted_data_size,
                                frame.key_id, frame.key_id_size);
  ASSERT_NO_FATAL_FAILURE(DecryptAndExpectToSucceed(encrypted_data,
                                                    frame.plain_text,
                                                    frame.plain_text_size));

  const WebmEncryptedData& frame2 = kWebmEncryptedFrames[2];
  GenerateKeyRequest(frame2.key_id, frame2.key_id_size);
  AddKeyAndExpectToSucceed(frame2.key_id, frame2.key_id_size,
                           frame2.key, frame2.key_size);

  const WebmEncryptedData& frame1 = kWebmEncryptedFrames[1];
  scoped_refptr<DecoderBuffer> encrypted_data1 =
      CreateWebMEncryptedBuffer(frame1.encrypted_data,
                                frame1.encrypted_data_size,
                                frame1.key_id, frame1.key_id_size);
  ASSERT_NO_FATAL_FAILURE(DecryptAndExpectToSucceed(encrypted_data1,
                                                    frame1.plain_text,
                                                    frame1.plain_text_size));

  scoped_refptr<DecoderBuffer> encrypted_data2 =
      CreateWebMEncryptedBuffer(frame2.encrypted_data,
                                frame2.encrypted_data_size,
                                frame2.key_id, frame2.key_id_size);
  ASSERT_NO_FATAL_FAILURE(DecryptAndExpectToSucceed(encrypted_data2,
                                                    frame2.plain_text,
                                                    frame2.plain_text_size));
}

TEST_F(AesDecryptorTest, CorruptedIv) {
  const WebmEncryptedData& frame = kWebmEncryptedFrames[0];
  GenerateKeyRequest(frame.key_id, frame.key_id_size);
  AddKeyAndExpectToSucceed(frame.key_id, frame.key_id_size,
                           frame.key, frame.key_size);

  // Change byte 13 to modify the IV. Bytes 13-20 of WebM encrypted data
  // contains the IV.
  std::vector<uint8> frame_with_bad_iv(
      frame.encrypted_data, frame.encrypted_data + frame.encrypted_data_size);
  frame_with_bad_iv[1]++;

  scoped_refptr<DecoderBuffer> encrypted_data =
      CreateWebMEncryptedBuffer(&frame_with_bad_iv[0],
                                frame.encrypted_data_size,
                                frame.key_id, frame.key_id_size);
  ASSERT_NO_FATAL_FAILURE(DecryptAndExpectDataMismatch(encrypted_data,
                                                       frame.plain_text,
                                                       frame.plain_text_size));
}

TEST_F(AesDecryptorTest, CorruptedData) {
  const WebmEncryptedData& frame = kWebmEncryptedFrames[0];
  GenerateKeyRequest(frame.key_id, frame.key_id_size);
  AddKeyAndExpectToSucceed(frame.key_id, frame.key_id_size,
                           frame.key, frame.key_size);

  // Change last byte to modify the data. Bytes 21+ of WebM encrypted data
  // contains the encrypted frame.
  std::vector<uint8> frame_with_bad_vp8_data(
      frame.encrypted_data, frame.encrypted_data + frame.encrypted_data_size);
  frame_with_bad_vp8_data[frame.encrypted_data_size - 1]++;

  scoped_refptr<DecoderBuffer> encrypted_data =
      CreateWebMEncryptedBuffer(&frame_with_bad_vp8_data[0],
                                frame.encrypted_data_size,
                                frame.key_id, frame.key_id_size);
  ASSERT_NO_FATAL_FAILURE(DecryptAndExpectDataMismatch(encrypted_data,
                                                       frame.plain_text,
                                                       frame.plain_text_size));
}

TEST_F(AesDecryptorTest, EncryptedAsUnencryptedFailure) {
  const WebmEncryptedData& frame = kWebmEncryptedFrames[0];
  GenerateKeyRequest(frame.key_id, frame.key_id_size);
  AddKeyAndExpectToSucceed(frame.key_id, frame.key_id_size,
                           frame.key, frame.key_size);

  // Change signal byte from an encrypted frame to an unencrypted frame. Byte
  // 12 of WebM encrypted data contains the signal byte.
  std::vector<uint8> frame_with_wrong_signal_byte(
      frame.encrypted_data, frame.encrypted_data + frame.encrypted_data_size);
  frame_with_wrong_signal_byte[0] = 0;

  scoped_refptr<DecoderBuffer> encrypted_data =
      CreateWebMEncryptedBuffer(&frame_with_wrong_signal_byte[0],
                                frame.encrypted_data_size,
                                frame.key_id, frame.key_id_size);
  ASSERT_NO_FATAL_FAILURE(
      DecryptAndExpectSizeDataMismatch(encrypted_data,
                                       frame.plain_text,
                                       frame.plain_text_size));
}

TEST_F(AesDecryptorTest, UnencryptedAsEncryptedFailure) {
  const WebmEncryptedData& frame = kWebmEncryptedFrames[3];
  GenerateKeyRequest(frame.key_id, frame.key_id_size);
  AddKeyAndExpectToSucceed(frame.key_id, frame.key_id_size,
                           frame.key, frame.key_size);

  // Change signal byte from an unencrypted frame to an encrypted frame. Byte
  // 0 of WebM encrypted data contains the signal byte.
  std::vector<uint8> frame_with_wrong_signal_byte(
      frame.encrypted_data, frame.encrypted_data + frame.encrypted_data_size);
  frame_with_wrong_signal_byte[0] = kWebMFlagEncryptedFrame;

  scoped_refptr<DecoderBuffer> encrypted_data =
      CreateWebMEncryptedBuffer(&frame_with_wrong_signal_byte[0],
                                frame.encrypted_data_size,
                                frame.key_id, frame.key_id_size);
  ASSERT_NO_FATAL_FAILURE(
      DecryptAndExpectSizeDataMismatch(encrypted_data,
                                       frame.plain_text,
                                       frame.plain_text_size));
}

TEST_F(AesDecryptorTest, SubsampleDecryption) {
  GenerateKeyRequest(kSubsampleKeyId, arraysize(kSubsampleKeyId));
  AddKeyAndExpectToSucceed(kSubsampleKeyId, arraysize(kSubsampleKeyId),
                           kSubsampleKey, arraysize(kSubsampleKey));
  scoped_refptr<DecoderBuffer> encrypted_data = CreateSubsampleEncryptedBuffer(
      kSubsampleData, arraysize(kSubsampleData),
      kSubsampleKeyId, arraysize(kSubsampleKeyId),
      kSubsampleIv, arraysize(kSubsampleIv),
      0,
      subsample_entries_);
  ASSERT_NO_FATAL_FAILURE(DecryptAndExpectToSucceed(
      encrypted_data, kSubsampleOriginalData, kSubsampleOriginalDataSize));
}

// Ensures noninterference of data offset and subsample mechanisms. We never
// expect to encounter this in the wild, but since the DecryptConfig doesn't
// disallow such a configuration, it should be covered.
TEST_F(AesDecryptorTest, SubsampleDecryptionWithOffset) {
  GenerateKeyRequest(kSubsampleKeyId, arraysize(kSubsampleKeyId));
  AddKeyAndExpectToSucceed(kSubsampleKeyId, arraysize(kSubsampleKeyId),
                           kSubsampleKey, arraysize(kSubsampleKey));
  scoped_refptr<DecoderBuffer> encrypted_data = CreateSubsampleEncryptedBuffer(
      kPaddedSubsampleData, arraysize(kPaddedSubsampleData),
      kSubsampleKeyId, arraysize(kSubsampleKeyId),
      kSubsampleIv, arraysize(kSubsampleIv),
      arraysize(kPaddedSubsampleData) - arraysize(kSubsampleData),
      subsample_entries_);
  ASSERT_NO_FATAL_FAILURE(DecryptAndExpectToSucceed(
      encrypted_data, kSubsampleOriginalData, kSubsampleOriginalDataSize));
}

// No subsample or offset.
TEST_F(AesDecryptorTest, NormalDecryption) {
  GenerateKeyRequest(kSubsampleKeyId, arraysize(kSubsampleKeyId));
  AddKeyAndExpectToSucceed(kSubsampleKeyId, arraysize(kSubsampleKeyId),
                           kSubsampleKey, arraysize(kSubsampleKey));
  scoped_refptr<DecoderBuffer> encrypted_data = CreateSubsampleEncryptedBuffer(
      kNoSubsampleData, arraysize(kNoSubsampleData),
      kSubsampleKeyId, arraysize(kSubsampleKeyId),
      kSubsampleIv, arraysize(kSubsampleIv),
      0,
      std::vector<SubsampleEntry>());
  ASSERT_NO_FATAL_FAILURE(DecryptAndExpectToSucceed(
      encrypted_data, kSubsampleOriginalData, kSubsampleOriginalDataSize));
}

TEST_F(AesDecryptorTest, IncorrectSubsampleSize) {
  GenerateKeyRequest(kSubsampleKeyId, arraysize(kSubsampleKeyId));
  AddKeyAndExpectToSucceed(kSubsampleKeyId, arraysize(kSubsampleKeyId),
                           kSubsampleKey, arraysize(kSubsampleKey));
  std::vector<SubsampleEntry> entries = subsample_entries_;
  entries[2].cypher_bytes += 1;

  scoped_refptr<DecoderBuffer> encrypted_data = CreateSubsampleEncryptedBuffer(
      kSubsampleData, arraysize(kSubsampleData),
      kSubsampleKeyId, arraysize(kSubsampleKeyId),
      kSubsampleIv, arraysize(kSubsampleIv),
      0,
      entries);
  ASSERT_NO_FATAL_FAILURE(DecryptAndExpectToFail(encrypted_data));
}

}  // namespace media