summaryrefslogtreecommitdiffstats
path: root/media/filters/audio_renderer_algorithm_unittest.cc
blob: 206491d29ef1dd2b159fe7052d5bf57c519bb483 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// The format of these tests are to enqueue a known amount of data and then
// request the exact amount we expect in order to dequeue the known amount of
// data.  This ensures that for any rate we are consuming input data at the
// correct rate.  We always pass in a very large destination buffer with the
// expectation that FillBuffer() will fill as much as it can but no more.

#include <stddef.h>
#include <stdint.h>

#include <algorithm>  // For std::min().
#include <cmath>
#include <vector>

#include "base/bind.h"
#include "base/callback.h"
#include "base/macros.h"
#include "base/memory/scoped_ptr.h"
#include "media/base/audio_buffer.h"
#include "media/base/audio_bus.h"
#include "media/base/channel_layout.h"
#include "media/base/test_helpers.h"
#include "media/base/timestamp_constants.h"
#include "media/filters/audio_renderer_algorithm.h"
#include "media/filters/wsola_internals.h"
#include "testing/gtest/include/gtest/gtest.h"

namespace media {

const int kFrameSize = 250;
const int kSamplesPerSecond = 3000;
const int kOutputDurationInSec = 10;

static void FillWithSquarePulseTrain(
    int half_pulse_width, int offset, int num_samples, float* data) {
  ASSERT_GE(offset, 0);
  ASSERT_LE(offset, num_samples);

  // Fill backward from |offset| - 1 toward zero, starting with -1, alternating
  // between -1 and 1 every |pulse_width| samples.
  float pulse = -1.0f;
  for (int n = offset - 1, k = 0; n >= 0; --n, ++k) {
    if (k >= half_pulse_width) {
      pulse = -pulse;
      k = 0;
    }
    data[n] = pulse;
  }

  // Fill forward from |offset| towards the end, starting with 1, alternating
  // between 1 and -1 every |pulse_width| samples.
  pulse = 1.0f;
  for (int n = offset, k = 0; n < num_samples; ++n, ++k) {
    if (k >= half_pulse_width) {
      pulse = -pulse;
      k = 0;
    }
    data[n] = pulse;
  }
}

static void FillWithSquarePulseTrain(
    int half_pulse_width, int offset, int channel, AudioBus* audio_bus) {
  FillWithSquarePulseTrain(half_pulse_width, offset, audio_bus->frames(),
                           audio_bus->channel(channel));
}

class AudioRendererAlgorithmTest : public testing::Test {
 public:
  AudioRendererAlgorithmTest()
      : frames_enqueued_(0),
        channels_(0),
        channel_layout_(CHANNEL_LAYOUT_NONE),
        sample_format_(kUnknownSampleFormat),
        samples_per_second_(0),
        bytes_per_sample_(0) {
  }

  ~AudioRendererAlgorithmTest() override {}

  void Initialize() {
    Initialize(CHANNEL_LAYOUT_STEREO, kSampleFormatS16, 3000);
  }

  void Initialize(ChannelLayout channel_layout,
                  SampleFormat sample_format,
                  int samples_per_second) {
    channels_ = ChannelLayoutToChannelCount(channel_layout);
    samples_per_second_ = samples_per_second;
    channel_layout_ = channel_layout;
    sample_format_ = sample_format;
    bytes_per_sample_ = SampleFormatToBytesPerChannel(sample_format);
    AudioParameters params(media::AudioParameters::AUDIO_PCM_LINEAR,
                           channel_layout,
                           samples_per_second,
                           bytes_per_sample_ * 8,
                           samples_per_second / 100);
    algorithm_.Initialize(params);
    FillAlgorithmQueue();
  }

  void FillAlgorithmQueue() {
    // The value of the data is meaningless; we just want non-zero data to
    // differentiate it from muted data.
    scoped_refptr<AudioBuffer> buffer;
    while (!algorithm_.IsQueueFull()) {
      switch (sample_format_) {
        case kSampleFormatU8:
          buffer = MakeAudioBuffer<uint8_t>(
              sample_format_, channel_layout_,
              ChannelLayoutToChannelCount(channel_layout_), samples_per_second_,
              1, 1, kFrameSize, kNoTimestamp());
          break;
        case kSampleFormatS16:
          buffer = MakeAudioBuffer<int16_t>(
              sample_format_, channel_layout_,
              ChannelLayoutToChannelCount(channel_layout_), samples_per_second_,
              1, 1, kFrameSize, kNoTimestamp());
          break;
        case kSampleFormatS32:
          buffer = MakeAudioBuffer<int32_t>(
              sample_format_, channel_layout_,
              ChannelLayoutToChannelCount(channel_layout_), samples_per_second_,
              1, 1, kFrameSize, kNoTimestamp());
          break;
        default:
          NOTREACHED() << "Unrecognized format " << sample_format_;
      }
      algorithm_.EnqueueBuffer(buffer);
      frames_enqueued_ += kFrameSize;
    }
  }

  bool VerifyAudioData(AudioBus* bus, int offset, int frames, float value) {
    for (int ch = 0; ch < bus->channels(); ++ch) {
      for (int i = offset; i < offset + frames; ++i) {
        if (bus->channel(ch)[i] != value)
          return false;
      }
    }
    return true;
  }

  bool AudioDataIsMuted(AudioBus* audio_data, int frames_written) {
    return VerifyAudioData(audio_data, 0, frames_written, 0);
  }

  int ComputeConsumedFrames(int initial_frames_enqueued,
                            int initial_frames_buffered) {
    int frame_delta = frames_enqueued_ - initial_frames_enqueued;
    int buffered_delta = algorithm_.frames_buffered() - initial_frames_buffered;
    int consumed = frame_delta - buffered_delta;
    CHECK_GE(consumed, 0);
    return consumed;
  }

  void TestPlaybackRate(double playback_rate) {
    const int kDefaultBufferSize = algorithm_.samples_per_second() / 100;
    const int kDefaultFramesRequested = kOutputDurationInSec *
        algorithm_.samples_per_second();

    TestPlaybackRate(
        playback_rate, kDefaultBufferSize, kDefaultFramesRequested);
  }

  void TestPlaybackRate(double playback_rate,
                        int buffer_size_in_frames,
                        int total_frames_requested) {
    int initial_frames_enqueued = frames_enqueued_;
    int initial_frames_buffered = algorithm_.frames_buffered();

    scoped_ptr<AudioBus> bus =
        AudioBus::Create(channels_, buffer_size_in_frames);
    if (playback_rate == 0.0) {
      int frames_written = algorithm_.FillBuffer(
          bus.get(), 0, buffer_size_in_frames, playback_rate);
      EXPECT_EQ(0, frames_written);
      return;
    }

    bool expect_muted = (playback_rate < 0.5 || playback_rate > 4);

    int frames_remaining = total_frames_requested;
    bool first_fill_buffer = true;
    while (frames_remaining > 0) {
      int frames_requested = std::min(buffer_size_in_frames, frames_remaining);
      int frames_written =
          algorithm_.FillBuffer(bus.get(), 0, frames_requested, playback_rate);
      ASSERT_GT(frames_written, 0) << "Requested: " << frames_requested
                                   << ", playing at " << playback_rate;

      // Do not check data if it is first pull out and only one frame written.
      // The very first frame out of WSOLA is always zero because of
      // overlap-and-add window, which is zero for the first sample. Therefore,
      // if at very first buffer-fill only one frame is written, that is zero
      // which might cause exception in CheckFakeData().
      if (!first_fill_buffer || frames_written > 1)
        ASSERT_EQ(expect_muted, AudioDataIsMuted(bus.get(), frames_written));
      first_fill_buffer = false;
      frames_remaining -= frames_written;

      FillAlgorithmQueue();
    }

    EXPECT_EQ(algorithm_.frames_buffered() * channels_ * sizeof(float),
              static_cast<size_t>(algorithm_.GetMemoryUsage()));

    int frames_consumed =
        ComputeConsumedFrames(initial_frames_enqueued, initial_frames_buffered);

    // If playing back at normal speed, we should always get back the same
    // number of bytes requested.
    if (playback_rate == 1.0) {
      EXPECT_EQ(total_frames_requested, frames_consumed);
      return;
    }

    // Otherwise, allow |kMaxAcceptableDelta| difference between the target and
    // actual playback rate.
    // When |kSamplesPerSecond| and |total_frames_requested| are reasonably
    // large, one can expect less than a 1% difference in most cases. In our
    // current implementation, sped up playback is less accurate than slowed
    // down playback, and for playback_rate > 1, playback rate generally gets
    // less and less accurate the farther it drifts from 1 (though this is
    // nonlinear).
    double actual_playback_rate =
        1.0 * frames_consumed / total_frames_requested;
    EXPECT_NEAR(playback_rate, actual_playback_rate, playback_rate / 100.0);
  }

  void WsolaTest(double playback_rate) {
    const int kSampleRateHz = 48000;
    const ChannelLayout kChannelLayout = CHANNEL_LAYOUT_STEREO;
    const int kBytesPerSample = 2;
    const int kNumFrames = kSampleRateHz / 100;  // 10 milliseconds.

    channels_ = ChannelLayoutToChannelCount(kChannelLayout);
    AudioParameters params(AudioParameters::AUDIO_PCM_LINEAR, kChannelLayout,
                           kSampleRateHz, kBytesPerSample * 8, kNumFrames);
    algorithm_.Initialize(params);

    // A pulse is 6 milliseconds (even number of samples).
    const int kPulseWidthSamples = 6 * kSampleRateHz / 1000;
    const int kHalfPulseWidthSamples = kPulseWidthSamples / 2;

    // For the ease of implementation get 1 frame every call to FillBuffer().
    scoped_ptr<AudioBus> output = AudioBus::Create(channels_, 1);

    // Input buffer to inject pulses.
    scoped_refptr<AudioBuffer> input =
        AudioBuffer::CreateBuffer(kSampleFormatPlanarF32,
                                  kChannelLayout,
                                  channels_,
                                  kSampleRateHz,
                                  kPulseWidthSamples);

    const std::vector<uint8_t*>& channel_data = input->channel_data();

    // Fill |input| channels.
    FillWithSquarePulseTrain(kHalfPulseWidthSamples, 0, kPulseWidthSamples,
                             reinterpret_cast<float*>(channel_data[0]));
    FillWithSquarePulseTrain(kHalfPulseWidthSamples, kHalfPulseWidthSamples,
                             kPulseWidthSamples,
                             reinterpret_cast<float*>(channel_data[1]));

    // A buffer for the output until a complete pulse is created. Then
    // reference pulse is compared with this buffer.
    scoped_ptr<AudioBus> pulse_buffer = AudioBus::Create(
        channels_, kPulseWidthSamples);

    const float kTolerance = 0.000001f;
    // Equivalent of 4 seconds.
    const int kNumRequestedPulses = kSampleRateHz * 4 / kPulseWidthSamples;
    for (int n = 0; n < kNumRequestedPulses; ++n) {
      int num_buffered_frames = 0;
      while (num_buffered_frames < kPulseWidthSamples) {
        int num_samples =
            algorithm_.FillBuffer(output.get(), 0, 1, playback_rate);
        ASSERT_LE(num_samples, 1);
        if (num_samples > 0) {
          output->CopyPartialFramesTo(0, num_samples, num_buffered_frames,
                                      pulse_buffer.get());
          num_buffered_frames++;
        } else {
          algorithm_.EnqueueBuffer(input);
        }
      }

      // Pulses in the first half of WSOLA AOL frame are not constructed
      // perfectly. Do not check them.
      if (n > 3) {
         for (int m = 0; m < channels_; ++m) {
          const float* pulse_ch = pulse_buffer->channel(m);

          // Because of overlap-and-add we might have round off error.
          for (int k = 0; k < kPulseWidthSamples; ++k) {
            ASSERT_NEAR(reinterpret_cast<float*>(channel_data[m])[k],
                        pulse_ch[k], kTolerance) << " loop " << n
                                << " channel/sample " << m << "/" << k;
          }
        }
      }

      // Zero out the buffer to be sure the next comparison is relevant.
      pulse_buffer->Zero();
    }
  }

 protected:
  AudioRendererAlgorithm algorithm_;
  int frames_enqueued_;
  int channels_;
  ChannelLayout channel_layout_;
  SampleFormat sample_format_;
  int samples_per_second_;
  int bytes_per_sample_;
};

TEST_F(AudioRendererAlgorithmTest, FillBuffer_NormalRate) {
  Initialize();
  TestPlaybackRate(1.0);
}

TEST_F(AudioRendererAlgorithmTest, FillBuffer_NearlyNormalFasterRate) {
  Initialize();
  TestPlaybackRate(1.0001);
}

TEST_F(AudioRendererAlgorithmTest, FillBuffer_NearlyNormalSlowerRate) {
  Initialize();
  TestPlaybackRate(0.9999);
}

TEST_F(AudioRendererAlgorithmTest, FillBuffer_OneAndAQuarterRate) {
  Initialize();
  TestPlaybackRate(1.25);
}

TEST_F(AudioRendererAlgorithmTest, FillBuffer_OneAndAHalfRate) {
  Initialize();
  TestPlaybackRate(1.5);
}

TEST_F(AudioRendererAlgorithmTest, FillBuffer_DoubleRate) {
  Initialize();
  TestPlaybackRate(2.0);
}

TEST_F(AudioRendererAlgorithmTest, FillBuffer_EightTimesRate) {
  Initialize();
  TestPlaybackRate(8.0);
}

TEST_F(AudioRendererAlgorithmTest, FillBuffer_ThreeQuartersRate) {
  Initialize();
  TestPlaybackRate(0.75);
}

TEST_F(AudioRendererAlgorithmTest, FillBuffer_HalfRate) {
  Initialize();
  TestPlaybackRate(0.5);
}

TEST_F(AudioRendererAlgorithmTest, FillBuffer_QuarterRate) {
  Initialize();
  TestPlaybackRate(0.25);
}

TEST_F(AudioRendererAlgorithmTest, FillBuffer_Pause) {
  Initialize();
  TestPlaybackRate(0.0);
}

TEST_F(AudioRendererAlgorithmTest, FillBuffer_SlowDown) {
  Initialize();
  TestPlaybackRate(4.5);
  TestPlaybackRate(3.0);
  TestPlaybackRate(2.0);
  TestPlaybackRate(1.0);
  TestPlaybackRate(0.5);
  TestPlaybackRate(0.25);
}

TEST_F(AudioRendererAlgorithmTest, FillBuffer_SpeedUp) {
  Initialize();
  TestPlaybackRate(0.25);
  TestPlaybackRate(0.5);
  TestPlaybackRate(1.0);
  TestPlaybackRate(2.0);
  TestPlaybackRate(3.0);
  TestPlaybackRate(4.5);
}

TEST_F(AudioRendererAlgorithmTest, FillBuffer_JumpAroundSpeeds) {
  Initialize();
  TestPlaybackRate(2.1);
  TestPlaybackRate(0.9);
  TestPlaybackRate(0.6);
  TestPlaybackRate(1.4);
  TestPlaybackRate(0.3);
}

TEST_F(AudioRendererAlgorithmTest, FillBuffer_SmallBufferSize) {
  Initialize();
  static const int kBufferSizeInFrames = 1;
  static const int kFramesRequested = kOutputDurationInSec * kSamplesPerSecond;
  TestPlaybackRate(1.0, kBufferSizeInFrames, kFramesRequested);
  TestPlaybackRate(0.5, kBufferSizeInFrames, kFramesRequested);
  TestPlaybackRate(1.5, kBufferSizeInFrames, kFramesRequested);
}

TEST_F(AudioRendererAlgorithmTest, FillBuffer_LargeBufferSize) {
  Initialize(CHANNEL_LAYOUT_STEREO, kSampleFormatS16, 44100);
  TestPlaybackRate(1.0);
  TestPlaybackRate(0.5);
  TestPlaybackRate(1.5);
}

TEST_F(AudioRendererAlgorithmTest, FillBuffer_LowerQualityAudio) {
  Initialize(CHANNEL_LAYOUT_MONO, kSampleFormatU8, kSamplesPerSecond);
  TestPlaybackRate(1.0);
  TestPlaybackRate(0.5);
  TestPlaybackRate(1.5);
}

TEST_F(AudioRendererAlgorithmTest, FillBuffer_HigherQualityAudio) {
  Initialize(CHANNEL_LAYOUT_STEREO, kSampleFormatS32, kSamplesPerSecond);
  TestPlaybackRate(1.0);
  TestPlaybackRate(0.5);
  TestPlaybackRate(1.5);
}

TEST_F(AudioRendererAlgorithmTest, DotProduct) {
  const int kChannels = 3;
  const int kFrames = 20;
  const int kHalfPulseWidth = 2;

  scoped_ptr<AudioBus> a = AudioBus::Create(kChannels, kFrames);
  scoped_ptr<AudioBus> b = AudioBus::Create(kChannels, kFrames);

  scoped_ptr<float[]> dot_prod(new float[kChannels]);

  FillWithSquarePulseTrain(kHalfPulseWidth, 0, 0, a.get());
  FillWithSquarePulseTrain(kHalfPulseWidth, 1, 1, a.get());
  FillWithSquarePulseTrain(kHalfPulseWidth, 2, 2, a.get());

  FillWithSquarePulseTrain(kHalfPulseWidth, 0, 0, b.get());
  FillWithSquarePulseTrain(kHalfPulseWidth, 0, 1, b.get());
  FillWithSquarePulseTrain(kHalfPulseWidth, 0, 2, b.get());

  internal::MultiChannelDotProduct(a.get(), 0, b.get(), 0, kFrames,
                                   dot_prod.get());

  EXPECT_FLOAT_EQ(kFrames, dot_prod[0]);
  EXPECT_FLOAT_EQ(0, dot_prod[1]);
  EXPECT_FLOAT_EQ(-kFrames, dot_prod[2]);

  internal::MultiChannelDotProduct(a.get(), 4, b.get(), 8, kFrames / 2,
                                   dot_prod.get());

  EXPECT_FLOAT_EQ(kFrames / 2, dot_prod[0]);
  EXPECT_FLOAT_EQ(0, dot_prod[1]);
  EXPECT_FLOAT_EQ(-kFrames / 2, dot_prod[2]);
}

TEST_F(AudioRendererAlgorithmTest, MovingBlockEnergy) {
  const int kChannels = 2;
  const int kFrames = 20;
  const int kFramesPerBlock = 3;
  const int kNumBlocks = kFrames - (kFramesPerBlock - 1);
  scoped_ptr<AudioBus> a = AudioBus::Create(kChannels, kFrames);
  scoped_ptr<float[]> energies(new float[kChannels * kNumBlocks]);
  float* ch_left = a->channel(0);
  float* ch_right = a->channel(1);

  // Fill up both channels.
  for (int n = 0; n < kFrames; ++n) {
    ch_left[n] = n;
    ch_right[n] = kFrames - 1 - n;
  }

  internal::MultiChannelMovingBlockEnergies(a.get(), kFramesPerBlock,
                                            energies.get());

  // Check if the energy of candidate blocks of each channel computed correctly.
  for (int n = 0; n < kNumBlocks; ++n) {
    float expected_energy = 0;
    for (int k = 0; k < kFramesPerBlock; ++k)
      expected_energy += ch_left[n + k] * ch_left[n + k];

    // Left (first) channel.
    EXPECT_FLOAT_EQ(expected_energy, energies[2 * n]);

    expected_energy = 0;
    for (int k = 0; k < kFramesPerBlock; ++k)
      expected_energy += ch_right[n + k] * ch_right[n + k];

    // Second (right) channel.
    EXPECT_FLOAT_EQ(expected_energy, energies[2 * n + 1]);
  }
}

TEST_F(AudioRendererAlgorithmTest, FullAndDecimatedSearch) {
  const int kFramesInSearchRegion = 12;
  const int kChannels = 2;
  float ch_0[] = {
      0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f };
  float ch_1[] = {
      0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.1f, 1.0f, 0.1f, 0.0f, 0.0f };
  ASSERT_EQ(sizeof(ch_0), sizeof(ch_1));
  ASSERT_EQ(static_cast<size_t>(kFramesInSearchRegion),
            sizeof(ch_0) / sizeof(*ch_0));
  scoped_ptr<AudioBus> search_region = AudioBus::Create(kChannels,
                                                        kFramesInSearchRegion);
  float* ch = search_region->channel(0);
  memcpy(ch, ch_0, sizeof(float) * kFramesInSearchRegion);
  ch = search_region->channel(1);
  memcpy(ch, ch_1, sizeof(float) * kFramesInSearchRegion);

  const int kFramePerBlock = 4;
  float target_0[] = { 1.0f, 1.0f, 1.0f, 0.0f };
  float target_1[] = { 0.0f, 1.0f, 0.1f, 1.0f };
  ASSERT_EQ(sizeof(target_0), sizeof(target_1));
  ASSERT_EQ(static_cast<size_t>(kFramePerBlock),
            sizeof(target_0) / sizeof(*target_0));

  scoped_ptr<AudioBus> target = AudioBus::Create(kChannels,
                                                 kFramePerBlock);
  ch = target->channel(0);
  memcpy(ch, target_0, sizeof(float) * kFramePerBlock);
  ch = target->channel(1);
  memcpy(ch, target_1, sizeof(float) * kFramePerBlock);

  scoped_ptr<float[]> energy_target(new float[kChannels]);

  internal::MultiChannelDotProduct(target.get(), 0, target.get(), 0,
                                   kFramePerBlock, energy_target.get());

  ASSERT_EQ(3.f, energy_target[0]);
  ASSERT_EQ(2.01f, energy_target[1]);

  const int kNumCandidBlocks = kFramesInSearchRegion - (kFramePerBlock - 1);
  scoped_ptr<float[]> energy_candid_blocks(new float[kNumCandidBlocks *
                                                     kChannels]);

  internal::MultiChannelMovingBlockEnergies(
      search_region.get(), kFramePerBlock, energy_candid_blocks.get());

  // Check the energy of the candidate blocks of the first channel.
  ASSERT_FLOAT_EQ(0, energy_candid_blocks[0]);
  ASSERT_FLOAT_EQ(0, energy_candid_blocks[2]);
  ASSERT_FLOAT_EQ(1, energy_candid_blocks[4]);
  ASSERT_FLOAT_EQ(2, energy_candid_blocks[6]);
  ASSERT_FLOAT_EQ(3, energy_candid_blocks[8]);
  ASSERT_FLOAT_EQ(3, energy_candid_blocks[10]);
  ASSERT_FLOAT_EQ(2, energy_candid_blocks[12]);
  ASSERT_FLOAT_EQ(1, energy_candid_blocks[14]);
  ASSERT_FLOAT_EQ(0, energy_candid_blocks[16]);

  // Check the energy of the candidate blocks of the second channel.
  ASSERT_FLOAT_EQ(0, energy_candid_blocks[1]);
  ASSERT_FLOAT_EQ(0, energy_candid_blocks[3]);
  ASSERT_FLOAT_EQ(0, energy_candid_blocks[5]);
  ASSERT_FLOAT_EQ(0, energy_candid_blocks[7]);
  ASSERT_FLOAT_EQ(0.01f, energy_candid_blocks[9]);
  ASSERT_FLOAT_EQ(1.01f, energy_candid_blocks[11]);
  ASSERT_FLOAT_EQ(1.02f, energy_candid_blocks[13]);
  ASSERT_FLOAT_EQ(1.02f, energy_candid_blocks[15]);
  ASSERT_FLOAT_EQ(1.01f, energy_candid_blocks[17]);

  // An interval which is of no effect.
  internal::Interval exclude_interval = std::make_pair(-100, -10);
  EXPECT_EQ(5, internal::FullSearch(
      0, kNumCandidBlocks - 1, exclude_interval, target.get(),
      search_region.get(), energy_target.get(), energy_candid_blocks.get()));

  // Exclude the the best match.
  exclude_interval = std::make_pair(2, 5);
  EXPECT_EQ(7, internal::FullSearch(
      0, kNumCandidBlocks - 1, exclude_interval, target.get(),
      search_region.get(), energy_target.get(), energy_candid_blocks.get()));

  // An interval which is of no effect.
  exclude_interval = std::make_pair(-100, -10);
  EXPECT_EQ(4, internal::DecimatedSearch(
      4, exclude_interval, target.get(), search_region.get(),
      energy_target.get(), energy_candid_blocks.get()));

  EXPECT_EQ(5, internal::OptimalIndex(search_region.get(), target.get(),
                                      exclude_interval));
}

TEST_F(AudioRendererAlgorithmTest, QuadraticInterpolation) {
  // Arbitrary coefficients.
  const float kA = 0.7f;
  const float kB = 1.2f;
  const float kC = 0.8f;

  float y_values[3];
  y_values[0] = kA - kB + kC;
  y_values[1] = kC;
  y_values[2] = kA + kB + kC;

  float extremum;
  float extremum_value;

  internal::QuadraticInterpolation(y_values, &extremum, &extremum_value);

  float x_star = -kB / (2.f * kA);
  float y_star = kA * x_star * x_star + kB * x_star + kC;

  EXPECT_FLOAT_EQ(x_star, extremum);
  EXPECT_FLOAT_EQ(y_star, extremum_value);
}

TEST_F(AudioRendererAlgorithmTest, QuadraticInterpolation_Colinear) {
  float y_values[3];
  y_values[0] = 1.0;
  y_values[1] = 1.0;
  y_values[2] = 1.0;

  float extremum;
  float extremum_value;

  internal::QuadraticInterpolation(y_values, &extremum, &extremum_value);

  EXPECT_FLOAT_EQ(extremum, 0.0);
  EXPECT_FLOAT_EQ(extremum_value, 1.0);
}

TEST_F(AudioRendererAlgorithmTest, WsolaSlowdown) {
  WsolaTest(0.6);
}

TEST_F(AudioRendererAlgorithmTest, WsolaSpeedup) {
  WsolaTest(1.6);
}

TEST_F(AudioRendererAlgorithmTest, FillBufferOffset) {
  Initialize();

  scoped_ptr<AudioBus> bus = AudioBus::Create(channels_, kFrameSize);

  // Verify that the first half of |bus| remains zero and the last half is
  // filled appropriately at normal, above normal, below normal, and muted
  // rates.
  const int kHalfSize = kFrameSize / 2;
  const float kAudibleRates[] = {1.0f, 2.0f, 0.5f};
  for (size_t i = 0; i < arraysize(kAudibleRates); ++i) {
    SCOPED_TRACE(kAudibleRates[i]);
    bus->Zero();

    const int frames_filled = algorithm_.FillBuffer(
        bus.get(), kHalfSize, kHalfSize, kAudibleRates[i]);
    ASSERT_EQ(kHalfSize, frames_filled);
    ASSERT_TRUE(VerifyAudioData(bus.get(), 0, kHalfSize, 0));
    ASSERT_FALSE(VerifyAudioData(bus.get(), kHalfSize, kHalfSize, 0));
    FillAlgorithmQueue();
  }

  const float kMutedRates[] = {5.0f, 0.25f};
  for (size_t i = 0; i < arraysize(kMutedRates); ++i) {
    SCOPED_TRACE(kMutedRates[i]);
    for (int ch = 0; ch < bus->channels(); ++ch)
      std::fill(bus->channel(ch), bus->channel(ch) + bus->frames(), 1.0f);

    const int frames_filled =
        algorithm_.FillBuffer(bus.get(), kHalfSize, kHalfSize, kMutedRates[i]);
    ASSERT_EQ(kHalfSize, frames_filled);
    ASSERT_FALSE(VerifyAudioData(bus.get(), 0, kHalfSize, 0));
    ASSERT_TRUE(VerifyAudioData(bus.get(), kHalfSize, kHalfSize, 0));
    FillAlgorithmQueue();
  }
}

}  // namespace media