summaryrefslogtreecommitdiffstats
path: root/media/filters/video_renderer_algorithm.cc
blob: bbb48648767b8f5b6da7fb4cda321b0b7c42647e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "media/filters/video_renderer_algorithm.h"

#include <algorithm>
#include <limits>

namespace media {

// The number of frames to store for moving average calculations.  Value picked
// after experimenting with playback of various local media and YouTube clips.
const int kMovingAverageSamples = 32;

VideoRendererAlgorithm::ReadyFrame::ReadyFrame(
    const scoped_refptr<VideoFrame>& ready_frame)
    : frame(ready_frame),
      has_estimated_end_time(true),
      ideal_render_count(0),
      render_count(0),
      drop_count(0) {
}

VideoRendererAlgorithm::ReadyFrame::~ReadyFrame() {
}

bool VideoRendererAlgorithm::ReadyFrame::operator<(
    const ReadyFrame& other) const {
  return frame->timestamp() < other.frame->timestamp();
}

VideoRendererAlgorithm::VideoRendererAlgorithm(
    const TimeSource::WallClockTimeCB& wall_clock_time_cb)
    : cadence_estimator_(base::TimeDelta::FromSeconds(
          kMinimumAcceptableTimeBetweenGlitchesSecs)),
      wall_clock_time_cb_(wall_clock_time_cb),
      frame_duration_calculator_(kMovingAverageSamples),
      frame_dropping_disabled_(false) {
  DCHECK(!wall_clock_time_cb_.is_null());
  Reset();
}

VideoRendererAlgorithm::~VideoRendererAlgorithm() {
}

scoped_refptr<VideoFrame> VideoRendererAlgorithm::Render(
    base::TimeTicks deadline_min,
    base::TimeTicks deadline_max,
    size_t* frames_dropped) {
  DCHECK_LT(deadline_min, deadline_max);

  if (frame_queue_.empty())
    return nullptr;

  if (frames_dropped)
    *frames_dropped = frames_dropped_during_enqueue_;
  frames_dropped_during_enqueue_ = 0;

  // Once Render() is called |last_frame_index_| has meaning and should thus be
  // preserved even if better frames come in before it due to out of order
  // timestamps.
  have_rendered_frames_ = true;

  // Step 1: Update the current render interval for subroutines.
  render_interval_ = deadline_max - deadline_min;

  // Step 2: Figure out if any intervals have been skipped since the last call
  // to Render().  If so, we assume the last frame provided was rendered during
  // those intervals and adjust its render count appropriately.
  AccountForMissedIntervals(deadline_min, deadline_max);

  // Step 3: Update the wall clock timestamps and frame duration estimates for
  // all frames currently in the |frame_queue_|.
  UpdateFrameStatistics();
  const bool have_known_duration = average_frame_duration_ > base::TimeDelta();
  if (!(was_time_moving_ && have_known_duration)) {
    ReadyFrame& ready_frame = frame_queue_[last_frame_index_];
    DCHECK(ready_frame.frame);

    // If duration is unknown, we don't have enough frames to make a good guess
    // about which frame to use, so always choose the first.
    if (was_time_moving_ && !have_known_duration)
      ++ready_frame.render_count;

    return ready_frame.frame;
  }

  last_deadline_max_ = deadline_max;
  base::TimeDelta selected_frame_drift;

  // Step 4: Attempt to find the best frame by cadence.
  int cadence_overage = 0;
  const int cadence_frame =
      FindBestFrameByCadence(first_frame_ ? nullptr : &cadence_overage);
  int frame_to_render = cadence_frame;
  if (frame_to_render >= 0) {
    selected_frame_drift =
        CalculateAbsoluteDriftForFrame(deadline_min, frame_to_render);
  }

  // Step 5: If no frame could be found by cadence or the selected frame exceeds
  // acceptable drift, try to find the best frame by coverage of the deadline.
  if (frame_to_render < 0 || selected_frame_drift > max_acceptable_drift_) {
    int second_best_by_coverage = -1;
    const int best_by_coverage = FindBestFrameByCoverage(
        deadline_min, deadline_max, &second_best_by_coverage);

    // If the frame was previously selected based on cadence, we're only here
    // because the drift is too large, so even if the cadence frame has the best
    // coverage, fallback to the second best by coverage if it has better drift.
    if (frame_to_render == best_by_coverage && second_best_by_coverage >= 0 &&
        CalculateAbsoluteDriftForFrame(deadline_min, second_best_by_coverage) <=
            selected_frame_drift) {
      frame_to_render = second_best_by_coverage;
    } else {
      frame_to_render = best_by_coverage;
    }

    if (frame_to_render >= 0) {
      selected_frame_drift =
          CalculateAbsoluteDriftForFrame(deadline_min, frame_to_render);
    }
  }

  // Step 6: If _still_ no frame could be found by coverage, try to choose the
  // least crappy option based on the drift from the deadline. If we're here the
  // selection is going to be bad because it means no suitable frame has any
  // coverage of the deadline interval.
  if (frame_to_render < 0 || selected_frame_drift > max_acceptable_drift_)
    frame_to_render = FindBestFrameByDrift(deadline_min, &selected_frame_drift);

  const bool ignored_cadence_frame =
      cadence_frame >= 0 && frame_to_render != cadence_frame;
  if (ignored_cadence_frame) {
    cadence_overage = 0;
    DVLOG(2) << "Cadence frame overridden by drift: " << selected_frame_drift;
  }

  last_render_had_glitch_ = selected_frame_drift > max_acceptable_drift_;
  DVLOG_IF(2, last_render_had_glitch_)
      << "Frame drift is too far: " << selected_frame_drift.InMillisecondsF()
      << "ms";

  DCHECK_GE(frame_to_render, 0);

  // Drop some debugging information if a frame had poor cadence.
  if (cadence_estimator_.has_cadence()) {
    const ReadyFrame& last_frame_info = frame_queue_[last_frame_index_];
    if (static_cast<size_t>(frame_to_render) != last_frame_index_ &&
        last_frame_info.render_count < last_frame_info.ideal_render_count) {
      last_render_had_glitch_ = true;
      DVLOG(2) << "Under-rendered frame " << last_frame_info.frame->timestamp()
               << "; only " << last_frame_info.render_count
               << " times instead of " << last_frame_info.ideal_render_count;
    } else if (static_cast<size_t>(frame_to_render) == last_frame_index_ &&
               last_frame_info.render_count >=
                   last_frame_info.ideal_render_count) {
      DVLOG(2) << "Over-rendered frame " << last_frame_info.frame->timestamp()
               << "; rendered " << last_frame_info.render_count + 1
               << " times instead of " << last_frame_info.ideal_render_count;
      last_render_had_glitch_ = true;
    }
  }

  // Step 7: Drop frames which occur prior to the frame to be rendered. If any
  // frame has a zero render count it should be reported as dropped.
  if (frame_to_render > 0) {
    if (frames_dropped) {
      for (int i = 0; i < frame_to_render; ++i) {
        const ReadyFrame& frame = frame_queue_[i];
        if (frame.render_count != frame.drop_count)
          continue;

        // If frame dropping is disabled, ignore the results of the algorithm
        // and return the earliest unrendered frame.
        if (frame_dropping_disabled_) {
          frame_to_render = i;
          break;
        }

        DVLOG(2) << "Dropping unrendered (or always dropped) frame "
                 << frame.frame->timestamp()
                 << ", wall clock: " << frame.start_time.ToInternalValue()
                 << " (" << frame.render_count << ", " << frame.drop_count
                 << ")";
        ++(*frames_dropped);
        if (!cadence_estimator_.has_cadence() || frame.ideal_render_count)
          last_render_had_glitch_ = true;
      }
    }

    // Increment the frame counter for all frames removed after the last
    // rendered frame.
    cadence_frame_counter_ += frame_to_render - last_frame_index_;
    frame_queue_.erase(frame_queue_.begin(),
                       frame_queue_.begin() + frame_to_render);
  }

  if (last_render_had_glitch_ && !first_frame_) {
    DVLOG(2) << "Deadline: [" << deadline_min.ToInternalValue() << ", "
             << deadline_max.ToInternalValue()
             << "], Interval: " << render_interval_.InMicroseconds()
             << ", Duration: " << average_frame_duration_.InMicroseconds();
  }

  // Step 8: Congratulations, the frame selection gauntlet has been passed!
  last_frame_index_ = 0;

  // If we ended up choosing a frame selected by cadence, carry over the overage
  // values from the previous frame.  Overage is treated as having been
  // displayed and dropped for each count.  If the frame wasn't selected by
  // cadence, |cadence_overage| will be zero.
  //
  // We also don't want to start counting render counts until the first frame
  // has reached its presentation time; which is considered to be when its
  // start time is at most |render_interval_| / 2 before |deadline_min|.
  if (!first_frame_ ||
      deadline_min >= frame_queue_.front().start_time - render_interval_ / 2) {
    // Ignore one frame of overage if the last call to Render() ignored the
    // frame selected by cadence due to drift.
    if (last_render_ignored_cadence_frame_ && cadence_overage > 0)
      cadence_overage -= 1;

    last_render_ignored_cadence_frame_ = ignored_cadence_frame;
    frame_queue_.front().render_count += cadence_overage + 1;
    frame_queue_.front().drop_count += cadence_overage;

    // Once we reach a glitch in our cadence sequence, reset the base frame
    // number used for defining the cadence sequence.
    if (ignored_cadence_frame) {
      cadence_frame_counter_ = 0;
      UpdateCadenceForFrames();
    }

    first_frame_ = false;
  }

  DCHECK(frame_queue_.front().frame);
  return frame_queue_.front().frame;
}

size_t VideoRendererAlgorithm::RemoveExpiredFrames(base::TimeTicks deadline) {
  // Update |last_deadline_max_| if it's no longer accurate; this should always
  // be done or EffectiveFramesQueued() may never expire the last frame.
  if (deadline > last_deadline_max_)
    last_deadline_max_ = deadline;

  if (frame_queue_.size() < 2)
    return 0;

  UpdateFrameStatistics();
  DCHECK_GT(average_frame_duration_, base::TimeDelta());

  // Finds and removes all frames which are too old to be used; I.e., the end of
  // their render interval is further than |max_acceptable_drift_| from the
  // given |deadline|.  We also always expire anything inserted before the last
  // rendered frame.
  size_t frames_to_expire = last_frame_index_;
  const base::TimeTicks minimum_start_time =
      deadline - max_acceptable_drift_ - average_frame_duration_;
  for (; frames_to_expire < frame_queue_.size() - 1; ++frames_to_expire) {
    if (frame_queue_[frames_to_expire].start_time >= minimum_start_time)
      break;
  }

  if (!frames_to_expire)
    return 0;

  cadence_frame_counter_ += frames_to_expire - last_frame_index_;
  frame_queue_.erase(frame_queue_.begin(),
                     frame_queue_.begin() + frames_to_expire);

  last_frame_index_ = last_frame_index_ > frames_to_expire
                          ? last_frame_index_ - frames_to_expire
                          : 0;
  return frames_to_expire;
}

void VideoRendererAlgorithm::OnLastFrameDropped() {
  // Since compositing is disconnected from the algorithm, the algorithm may be
  // Reset() in between ticks of the compositor, so discard notifications which
  // are invalid.
  //
  // If frames were expired by RemoveExpiredFrames() this count may be zero when
  // the OnLastFrameDropped() call comes in.
  if (!have_rendered_frames_ || frame_queue_.empty() ||
      !frame_queue_[last_frame_index_].render_count) {
    return;
  }

  ++frame_queue_[last_frame_index_].drop_count;
  DCHECK_LE(frame_queue_[last_frame_index_].drop_count,
            frame_queue_[last_frame_index_].render_count);
}

void VideoRendererAlgorithm::Reset() {
  frames_dropped_during_enqueue_ = last_frame_index_ = 0;
  have_rendered_frames_ = last_render_had_glitch_ = false;
  last_deadline_max_ = base::TimeTicks();
  average_frame_duration_ = render_interval_ = base::TimeDelta();
  frame_queue_.clear();
  cadence_estimator_.Reset();
  frame_duration_calculator_.Reset();
  first_frame_ = true;
  cadence_frame_counter_ = 0;
  last_render_ignored_cadence_frame_ = false;
  was_time_moving_ = false;

  // Default to ATSC IS/191 recommendations for maximum acceptable drift before
  // we have enough frames to base the maximum on frame duration.
  max_acceptable_drift_ = base::TimeDelta::FromMilliseconds(15);
}

size_t VideoRendererAlgorithm::EffectiveFramesQueued() const {
  if (frame_queue_.empty() || average_frame_duration_ == base::TimeDelta() ||
      last_deadline_max_.is_null()) {
    return frame_queue_.size();
  }

  // If we don't have cadence, subtract off any frames which are before
  // the last rendered frame or are past their expected rendering time.
  if (!cadence_estimator_.has_cadence()) {
    size_t expired_frames = last_frame_index_;
    DCHECK_LT(last_frame_index_, frame_queue_.size());
    for (; expired_frames < frame_queue_.size(); ++expired_frames) {
      const ReadyFrame& frame = frame_queue_[expired_frames];
      if (frame.end_time.is_null() || frame.end_time > last_deadline_max_)
        break;
    }
    return frame_queue_.size() - expired_frames;
  }

  // Find the first usable frame to start counting from.
  const int start_index = FindBestFrameByCadence(nullptr);
  if (start_index < 0)
    return 0;

  const base::TimeTicks minimum_start_time =
      last_deadline_max_ - max_acceptable_drift_;
  size_t renderable_frame_count = 0;
  for (size_t i = start_index; i < frame_queue_.size(); ++i) {
    const ReadyFrame& frame = frame_queue_[i];
    if (frame.render_count < frame.ideal_render_count &&
        (frame.end_time.is_null() || frame.end_time > minimum_start_time)) {
      ++renderable_frame_count;
    }
  }

  return renderable_frame_count;
}

void VideoRendererAlgorithm::EnqueueFrame(
    const scoped_refptr<VideoFrame>& frame) {
  DCHECK(frame);
  DCHECK(!frame->metadata()->IsTrue(VideoFrameMetadata::END_OF_STREAM));

  ReadyFrame ready_frame(frame);
  auto it = frame_queue_.empty() ? frame_queue_.end()
                                 : std::lower_bound(frame_queue_.begin(),
                                                    frame_queue_.end(), frame);
  DCHECK_GE(it - frame_queue_.begin(), 0);

  // Drop any frames inserted before or at the last rendered frame if we've
  // already rendered any frames.
  const size_t new_frame_index = it - frame_queue_.begin();
  if (new_frame_index <= last_frame_index_ && have_rendered_frames_) {
    DVLOG(2) << "Dropping frame inserted before the last rendered frame.";
    ++frames_dropped_during_enqueue_;
    return;
  }

  // Drop any frames which are less than a millisecond apart in media time (even
  // those with timestamps matching an already enqueued frame), there's no way
  // we can reasonably render these frames; it's effectively a 1000fps limit.
  const base::TimeDelta delta =
      std::min(new_frame_index < frame_queue_.size()
                   ? frame_queue_[new_frame_index].frame->timestamp() -
                         frame->timestamp()
                   : base::TimeDelta::Max(),
               new_frame_index > 0
                   ? frame->timestamp() -
                         frame_queue_[new_frame_index - 1].frame->timestamp()
                   : base::TimeDelta::Max());
  if (delta < base::TimeDelta::FromMilliseconds(1)) {
    DVLOG(2) << "Dropping frame too close to an already enqueued frame: "
             << delta.InMicroseconds() << " us";
    ++frames_dropped_during_enqueue_;
    return;
  }

  // The vast majority of cases should always append to the back, but in rare
  // circumstance we get out of order timestamps, http://crbug.com/386551.
  frame_queue_.insert(it, ready_frame);

  // Project the current cadence calculations to include the new frame.  These
  // may not be accurate until the next Render() call.  These updates are done
  // to ensure EffectiveFramesQueued() returns a semi-reliable result.
  if (cadence_estimator_.has_cadence())
    UpdateCadenceForFrames();

#ifndef NDEBUG
  // Verify sorted order in debug mode.
  for (size_t i = 0; i < frame_queue_.size() - 1; ++i) {
    DCHECK(frame_queue_[i].frame->timestamp() <=
           frame_queue_[i + 1].frame->timestamp());
  }
#endif
}

void VideoRendererAlgorithm::AccountForMissedIntervals(
    base::TimeTicks deadline_min,
    base::TimeTicks deadline_max) {
  if (last_deadline_max_.is_null() || deadline_min <= last_deadline_max_ ||
      !have_rendered_frames_ || !was_time_moving_) {
    return;
  }

  DCHECK_GT(render_interval_, base::TimeDelta());
  const int64 render_cycle_count =
      (deadline_min - last_deadline_max_) / render_interval_;

  // In the ideal case this value will be zero.
  if (!render_cycle_count)
    return;

  DVLOG(2) << "Missed " << render_cycle_count << " Render() intervals.";

  // Only update render count if the frame was rendered at all; it may not have
  // been if the frame is at the head because we haven't rendered anything yet
  // or because previous frames were removed via RemoveExpiredFrames().
  ReadyFrame& ready_frame = frame_queue_[last_frame_index_];
  if (!ready_frame.render_count)
    return;

  // If the frame was never really rendered since it was dropped each attempt,
  // we need to increase the drop count as well to match the new render count.
  // Otherwise we won't properly count the frame as dropped when it's discarded.
  // We always update the render count so FindBestFrameByCadence() can properly
  // account for potentially over-rendered frames.
  if (ready_frame.render_count == ready_frame.drop_count)
    ready_frame.drop_count += render_cycle_count;
  ready_frame.render_count += render_cycle_count;
}

void VideoRendererAlgorithm::UpdateFrameStatistics() {
  DCHECK(!frame_queue_.empty());

  // Figure out all current ready frame times at once.
  std::vector<base::TimeDelta> media_timestamps;
  media_timestamps.reserve(frame_queue_.size());
  for (const auto& ready_frame : frame_queue_)
    media_timestamps.push_back(ready_frame.frame->timestamp());

  std::vector<base::TimeTicks> wall_clock_times;
  was_time_moving_ =
      wall_clock_time_cb_.Run(media_timestamps, &wall_clock_times);

  // Transfer the converted wall clock times into our frame queue.
  DCHECK_EQ(wall_clock_times.size(), frame_queue_.size());
  for (size_t i = 0; i < frame_queue_.size() - 1; ++i) {
    ReadyFrame& frame = frame_queue_[i];
    const bool new_sample = frame.has_estimated_end_time;
    frame.start_time = wall_clock_times[i];
    frame.end_time = wall_clock_times[i + 1];
    frame.has_estimated_end_time = false;
    if (new_sample)
      frame_duration_calculator_.AddSample(frame.end_time - frame.start_time);
  }
  frame_queue_.back().start_time = wall_clock_times.back();

  if (!frame_duration_calculator_.count())
    return;

  // Compute |average_frame_duration_|, a moving average of the last few frames;
  // see kMovingAverageSamples for the exact number.
  average_frame_duration_ = frame_duration_calculator_.Average();

  // Update the frame end time for the last frame based on the average.
  frame_queue_.back().end_time =
      frame_queue_.back().start_time + average_frame_duration_;

  // ITU-R BR.265 recommends a maximum acceptable drift of +/- half of the frame
  // duration; there are other asymmetric, more lenient measures, that we're
  // forgoing in favor of simplicity.
  //
  // We'll always allow at least 16.66ms of drift since literature suggests it's
  // well below the floor of detection and is high enough to ensure stability
  // for 60fps content.
  max_acceptable_drift_ = std::max(average_frame_duration_ / 2,
                                   base::TimeDelta::FromSecondsD(1.0 / 60));

  // If we were called via RemoveExpiredFrames() and Render() was never called,
  // we may not have a render interval yet.
  if (render_interval_ == base::TimeDelta())
    return;

  const bool cadence_changed = cadence_estimator_.UpdateCadenceEstimate(
      render_interval_, average_frame_duration_, max_acceptable_drift_);

  // No need to update cadence if there's been no change; cadence will be set
  // as frames are added to the queue.
  if (!cadence_changed)
    return;

  cadence_frame_counter_ = 0;
  UpdateCadenceForFrames();
}

void VideoRendererAlgorithm::UpdateCadenceForFrames() {
  for (size_t i = last_frame_index_; i < frame_queue_.size(); ++i) {
    // It's always okay to adjust the ideal render count, since the cadence
    // selection method will still count its current render count towards
    // cadence selection.
    frame_queue_[i].ideal_render_count =
        cadence_estimator_.has_cadence()
            ? cadence_estimator_.GetCadenceForFrame(cadence_frame_counter_ +
                                                    (i - last_frame_index_))
            : 0;
  }
}

int VideoRendererAlgorithm::FindBestFrameByCadence(
    int* remaining_overage) const {
  DCHECK(!frame_queue_.empty());
  if (!cadence_estimator_.has_cadence())
    return -1;

  DCHECK(!frame_queue_.empty());
  DCHECK(cadence_estimator_.has_cadence());
  const ReadyFrame& current_frame = frame_queue_[last_frame_index_];

  if (remaining_overage) {
    DCHECK_EQ(*remaining_overage, 0);
  }

  // If the current frame is below cadence, we should prefer it.
  if (current_frame.render_count < current_frame.ideal_render_count)
    return last_frame_index_;

  // For over-rendered frames we need to ensure we skip frames and subtract
  // each skipped frame's ideal cadence from the over-render count until we
  // find a frame which still has a positive ideal render count.
  int render_count_overage = std::max(
      0, current_frame.render_count - current_frame.ideal_render_count);

  // If the current frame is on cadence or over cadence, find the next frame
  // with a positive ideal render count.
  for (size_t i = last_frame_index_ + 1; i < frame_queue_.size(); ++i) {
    const ReadyFrame& frame = frame_queue_[i];
    if (frame.ideal_render_count > render_count_overage) {
      if (remaining_overage)
        *remaining_overage = render_count_overage;
      return i;
    } else {
      // The ideal render count should always be zero or smaller than the
      // over-render count.
      render_count_overage -= frame.ideal_render_count;
      DCHECK_GE(render_count_overage, 0);
    }
  }

  // We don't have enough frames to find a better once by cadence.
  return -1;
}

int VideoRendererAlgorithm::FindBestFrameByCoverage(
    base::TimeTicks deadline_min,
    base::TimeTicks deadline_max,
    int* second_best) const {
  DCHECK(!frame_queue_.empty());

  // Find the frame which covers the most of the interval [deadline_min,
  // deadline_max]. Frames outside of the interval are considered to have no
  // coverage, while those which completely overlap the interval have complete
  // coverage.
  int best_frame_by_coverage = -1;
  base::TimeDelta best_coverage;
  std::vector<base::TimeDelta> coverage(frame_queue_.size(), base::TimeDelta());
  for (size_t i = last_frame_index_; i < frame_queue_.size(); ++i) {
    const ReadyFrame& frame = frame_queue_[i];

    // Frames which start after the deadline interval have zero coverage.
    if (frame.start_time > deadline_max)
      break;

    // Clamp frame end times to a maximum of |deadline_max|.
    const base::TimeTicks end_time = std::min(deadline_max, frame.end_time);

    // Frames entirely before the deadline interval have zero coverage.
    if (end_time < deadline_min)
      continue;

    // If we're here, the current frame overlaps the deadline in some way; so
    // compute the duration of the interval which is covered.
    const base::TimeDelta duration =
        end_time - std::max(deadline_min, frame.start_time);

    coverage[i] = duration;
    if (coverage[i] > best_coverage) {
      best_frame_by_coverage = i;
      best_coverage = coverage[i];
    }
  }

  // Find the second best frame by coverage; done by zeroing the coverage for
  // the previous best and recomputing the maximum.
  *second_best = -1;
  if (best_frame_by_coverage >= 0) {
    coverage[best_frame_by_coverage] = base::TimeDelta();
    auto it = std::max_element(coverage.begin(), coverage.end());
    if (*it > base::TimeDelta())
      *second_best = it - coverage.begin();
  }

  // If two frames have coverage within half a millisecond, prefer the earliest
  // frame as having the best coverage.  Value chosen via experimentation to
  // ensure proper coverage calculation for 24fps in 60Hz where +/- 100us of
  // jitter is present within the |render_interval_|. At 60Hz this works out to
  // an allowed jitter of 3%.
  const base::TimeDelta kAllowableJitter =
      base::TimeDelta::FromMicroseconds(500);
  if (*second_best >= 0 && best_frame_by_coverage > *second_best &&
      (best_coverage - coverage[*second_best]).magnitude() <=
          kAllowableJitter) {
    std::swap(best_frame_by_coverage, *second_best);
  }

  // TODO(dalecurtis): We may want to make a better decision about what to do
  // when multiple frames have equivalent coverage over an interval.  Jitter in
  // the render interval may result in irregular frame selection which may be
  // visible to a viewer.
  //
  // 23.974fps and 24fps in 60Hz are the most common susceptible rates, so
  // extensive tests have been added to ensure these cases work properly.

  return best_frame_by_coverage;
}

int VideoRendererAlgorithm::FindBestFrameByDrift(
    base::TimeTicks deadline_min,
    base::TimeDelta* selected_frame_drift) const {
  DCHECK(!frame_queue_.empty());

  int best_frame_by_drift = -1;
  *selected_frame_drift = base::TimeDelta::Max();

  for (size_t i = last_frame_index_; i < frame_queue_.size(); ++i) {
    const base::TimeDelta drift =
        CalculateAbsoluteDriftForFrame(deadline_min, i);
    // We use <= here to prefer the latest frame with minimum drift.
    if (drift <= *selected_frame_drift) {
      *selected_frame_drift = drift;
      best_frame_by_drift = i;
    }
  }

  return best_frame_by_drift;
}

base::TimeDelta VideoRendererAlgorithm::CalculateAbsoluteDriftForFrame(
    base::TimeTicks deadline_min,
    int frame_index) const {
  const ReadyFrame& frame = frame_queue_[frame_index];
  // If the frame lies before the deadline, compute the delta against the end
  // of the frame's duration.
  if (frame.end_time < deadline_min)
    return deadline_min - frame.end_time;

  // If the frame lies after the deadline, compute the delta against the frame's
  // start time.
  if (frame.start_time > deadline_min)
    return frame.start_time - deadline_min;

  // Drift is zero for frames which overlap the deadline interval.
  DCHECK_GE(deadline_min, frame.start_time);
  DCHECK_GE(frame.end_time, deadline_min);
  return base::TimeDelta();
}

}  // namespace media