summaryrefslogtreecommitdiffstats
path: root/media/midi/usb_midi_descriptor_parser.cc
blob: a3bc128ab8c4690c4ddb4fbd8872889a11e2c205 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "media/midi/usb_midi_descriptor_parser.h"

#include <algorithm>

#include "base/logging.h"
#include "base/strings/stringprintf.h"

namespace media {
namespace midi {

namespace {

// The constants below are specified in USB spec, USB audio spec
// and USB midi spec.

enum DescriptorType {
  TYPE_DEVICE = 1,
  TYPE_CONFIGURATION = 2,
  TYPE_STRING = 3,
  TYPE_INTERFACE = 4,
  TYPE_ENDPOINT = 5,
  TYPE_DEVICE_QUALIFIER = 6,
  TYPE_OTHER_SPEED_CONFIGURATION = 7,
  TYPE_INTERFACE_POWER = 8,

  TYPE_CS_INTERFACE = 36,
  TYPE_CS_ENDPOINT = 37,
};

enum DescriptorSubType {
  SUBTYPE_MS_DESCRIPTOR_UNDEFINED = 0,
  SUBTYPE_MS_HEADER = 1,
  SUBTYPE_MIDI_IN_JACK = 2,
  SUBTYPE_MIDI_OUT_JACK = 3,
  SUBTYPE_ELEMENT = 4,
};

enum JackType {
  JACK_TYPE_UNDEFINED = 0,
  JACK_TYPE_EMBEDDED = 1,
  JACK_TYPE_EXTERNAL = 2,
};

const uint8_t kAudioInterfaceClass = 1;
const uint8_t kAudioMidiInterfaceSubclass = 3;

class JackMatcher {
 public:
  explicit JackMatcher(uint8_t id) : id_(id) {}

  bool operator() (const UsbMidiJack& jack) const {
    return jack.jack_id == id_;
  }

 private:
  uint8_t id_;
};

int DecodeBcd(uint8_t byte) {
  DCHECK_LT((byte & 0xf0) >> 4, 0xa);
  DCHECK_LT(byte & 0x0f, 0xa);
  return ((byte & 0xf0) >> 4) * 10 + (byte & 0x0f);
}

}  // namespace

std::string UsbMidiDescriptorParser::DeviceInfo::BcdVersionToString(
    uint16_t version) {
  return base::StringPrintf("%d.%02d", DecodeBcd(version >> 8),
                            DecodeBcd(version & 0xff));
}

UsbMidiDescriptorParser::UsbMidiDescriptorParser()
    : is_parsing_usb_midi_interface_(false),
      current_endpoint_address_(0),
      current_cable_number_(0) {}

UsbMidiDescriptorParser::~UsbMidiDescriptorParser() {}

bool UsbMidiDescriptorParser::Parse(UsbMidiDevice* device,
                                    const uint8_t* data,
                                    size_t size,
                                    std::vector<UsbMidiJack>* jacks) {
  jacks->clear();
  bool result = ParseInternal(device, data, size, jacks);
  if (!result)
    jacks->clear();
  Clear();
  return result;
}

bool UsbMidiDescriptorParser::ParseDeviceInfo(const uint8_t* data,
                                              size_t size,
                                              DeviceInfo* info) {
  *info = DeviceInfo();
  for (const uint8_t* current = data; current < data + size;
       current += current[0]) {
    uint8_t length = current[0];
    if (length < 2) {
      DVLOG(1) << "Descriptor Type is not accessible.";
      return false;
    }
    if (current + length > data + size) {
      DVLOG(1) << "The header size is incorrect.";
      return false;
    }
    DescriptorType descriptor_type = static_cast<DescriptorType>(current[1]);
    if (descriptor_type != TYPE_DEVICE)
      continue;
    // We assume that ParseDevice doesn't modify |*info| if it returns false.
    return ParseDevice(current, length, info);
  }
  // No DEVICE descriptor is found.
  return false;
}

bool UsbMidiDescriptorParser::ParseInternal(UsbMidiDevice* device,
                                            const uint8_t* data,
                                            size_t size,
                                            std::vector<UsbMidiJack>* jacks) {
  for (const uint8_t* current = data; current < data + size;
       current += current[0]) {
    uint8_t length = current[0];
    if (length < 2) {
      DVLOG(1) << "Descriptor Type is not accessible.";
      return false;
    }
    if (current + length > data + size) {
      DVLOG(1) << "The header size is incorrect.";
      return false;
    }
    DescriptorType descriptor_type = static_cast<DescriptorType>(current[1]);
    if (descriptor_type != TYPE_INTERFACE && !is_parsing_usb_midi_interface_)
      continue;

    switch (descriptor_type) {
      case TYPE_INTERFACE:
        if (!ParseInterface(current, length))
          return false;
        break;
      case TYPE_CS_INTERFACE:
        // We are assuming that the corresponding INTERFACE precedes
        // the CS_INTERFACE descriptor, as specified.
        if (!ParseCSInterface(device, current, length))
          return false;
        break;
      case TYPE_ENDPOINT:
        // We are assuming that endpoints are contained in an interface.
        if (!ParseEndpoint(current, length))
          return false;
        break;
      case TYPE_CS_ENDPOINT:
        // We are assuming that the corresponding ENDPOINT precedes
        // the CS_ENDPOINT descriptor, as specified.
        if (!ParseCSEndpoint(current, length, jacks))
          return false;
        break;
      default:
        // Ignore uninteresting types.
        break;
    }
  }
  return true;
}

bool UsbMidiDescriptorParser::ParseDevice(const uint8_t* data,
                                          size_t size,
                                          DeviceInfo* info) {
  if (size < 0x12) {
    DVLOG(1) << "DEVICE header size is incorrect.";
    return false;
  }

  info->vendor_id = data[8] | (data[9] << 8);
  info->product_id = data[0xa] | (data[0xb] << 8);
  info->bcd_device_version = data[0xc] | (data[0xd] << 8);
  info->manufacturer_index = data[0xe];
  info->product_index = data[0xf];
  return true;
}

bool UsbMidiDescriptorParser::ParseInterface(const uint8_t* data, size_t size) {
  if (size != 9) {
    DVLOG(1) << "INTERFACE header size is incorrect.";
    return false;
  }
  incomplete_jacks_.clear();

  uint8_t interface_class = data[5];
  uint8_t interface_subclass = data[6];

  // All descriptors of endpoints contained in this interface
  // precede the next INTERFACE descriptor.
  is_parsing_usb_midi_interface_ =
      interface_class == kAudioInterfaceClass &&
      interface_subclass == kAudioMidiInterfaceSubclass;
  return true;
}

bool UsbMidiDescriptorParser::ParseCSInterface(UsbMidiDevice* device,
                                               const uint8_t* data,
                                               size_t size) {
  // Descriptor Type and Descriptor Subtype should be accessible.
  if (size < 3) {
    DVLOG(1) << "CS_INTERFACE header size is incorrect.";
    return false;
  }

  DescriptorSubType subtype = static_cast<DescriptorSubType>(data[2]);

  if (subtype != SUBTYPE_MIDI_OUT_JACK &&
      subtype != SUBTYPE_MIDI_IN_JACK)
    return true;

  if (size < 6) {
    DVLOG(1) << "CS_INTERFACE (MIDI JACK) header size is incorrect.";
    return false;
  }
  uint8_t jack_type = data[3];
  uint8_t id = data[4];
  if (jack_type == JACK_TYPE_EMBEDDED) {
    // We can't determine the associated endpoint now.
    incomplete_jacks_.push_back(UsbMidiJack(device, id, 0, 0));
  }
  return true;
}

bool UsbMidiDescriptorParser::ParseEndpoint(const uint8_t* data, size_t size) {
  if (size < 4) {
    DVLOG(1) << "ENDPOINT header size is incorrect.";
    return false;
  }
  current_endpoint_address_ = data[2];
  current_cable_number_ = 0;
  return true;
}

bool UsbMidiDescriptorParser::ParseCSEndpoint(const uint8_t* data,
                                              size_t size,
                                              std::vector<UsbMidiJack>* jacks) {
  const size_t kSizeForEmptyJacks = 4;
  // CS_ENDPOINT must be of size 4 + n where n is the number of associated
  // jacks.
  if (size < kSizeForEmptyJacks) {
    DVLOG(1) << "CS_ENDPOINT header size is incorrect.";
    return false;
  }
  uint8_t num_jacks = data[3];
  if (size != kSizeForEmptyJacks + num_jacks) {
    DVLOG(1) << "CS_ENDPOINT header size is incorrect.";
    return false;
  }

  for (size_t i = 0; i < num_jacks; ++i) {
    uint8_t jack = data[kSizeForEmptyJacks + i];
    std::vector<UsbMidiJack>::iterator it =
        std::find_if(incomplete_jacks_.begin(),
                     incomplete_jacks_.end(),
                     JackMatcher(jack));
    if (it == incomplete_jacks_.end()) {
      DVLOG(1) << "A non-existing MIDI jack is associated.";
      return false;
    }
    if (current_cable_number_ > 0xf) {
      DVLOG(1) << "Cable number should range from 0x0 to 0xf.";
      return false;
    }
    // CS_ENDPOINT follows ENDPOINT and hence we can use the following
    // member variables.
    it->cable_number = current_cable_number_++;
    it->endpoint_address = current_endpoint_address_;
    jacks->push_back(*it);
    incomplete_jacks_.erase(it);
  }
  return true;
}

void UsbMidiDescriptorParser::Clear() {
  is_parsing_usb_midi_interface_ = false;
  current_endpoint_address_ = 0;
  current_cable_number_ = 0;
  incomplete_jacks_.clear();
}

}  // namespace midi
}  // namespace media