summaryrefslogtreecommitdiffstats
path: root/media/renderers/audio_renderer_impl_unittest.cc
blob: 57d5dca43826dd69397f279a8795cfadef24f374 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "media/renderers/audio_renderer_impl.h"

#include <utility>

#include "base/bind.h"
#include "base/callback_helpers.h"
#include "base/format_macros.h"
#include "base/macros.h"
#include "base/run_loop.h"
#include "base/strings/stringprintf.h"
#include "base/test/simple_test_tick_clock.h"
#include "media/base/audio_buffer_converter.h"
#include "media/base/audio_hardware_config.h"
#include "media/base/audio_splicer.h"
#include "media/base/fake_audio_renderer_sink.h"
#include "media/base/gmock_callback_support.h"
#include "media/base/media_util.h"
#include "media/base/mock_filters.h"
#include "media/base/test_helpers.h"
#include "testing/gtest/include/gtest/gtest.h"

using ::base::TimeDelta;
using ::testing::_;
using ::testing::Return;
using ::testing::SaveArg;

namespace media {

namespace {

// Since AudioBufferConverter is used due to different input/output sample
// rates, define some helper types to differentiate between the two.
struct InputFrames {
  explicit InputFrames(int value) : value(value) {}
  int value;
};

struct OutputFrames {
  explicit OutputFrames(int value) : value(value) {}
  int value;
};

}  // namespace

// Constants to specify the type of audio data used.
static AudioCodec kCodec = kCodecVorbis;
static SampleFormat kSampleFormat = kSampleFormatPlanarF32;
static ChannelLayout kChannelLayout = CHANNEL_LAYOUT_STEREO;
static int kChannelCount = 2;
static int kChannels = ChannelLayoutToChannelCount(kChannelLayout);

// Use a different output sample rate so the AudioBufferConverter is invoked.
static int kInputSamplesPerSecond = 5000;
static int kOutputSamplesPerSecond = 10000;
static double kOutputMicrosPerFrame =
    static_cast<double>(base::Time::kMicrosecondsPerSecond) /
    kOutputSamplesPerSecond;

ACTION_P(EnterPendingDecoderInitStateAction, test) {
  test->EnterPendingDecoderInitState(arg2);
}

class AudioRendererImplTest : public ::testing::Test {
 public:
  // Give the decoder some non-garbage media properties.
  AudioRendererImplTest()
      : hardware_config_(AudioParameters(), AudioParameters()),
        tick_clock_(new base::SimpleTestTickClock()),
        demuxer_stream_(DemuxerStream::AUDIO),
        decoder_(new MockAudioDecoder()),
        ended_(false) {
    AudioDecoderConfig audio_config(kCodec, kSampleFormat, kChannelLayout,
                                    kInputSamplesPerSecond, EmptyExtraData(),
                                    Unencrypted());
    demuxer_stream_.set_audio_decoder_config(audio_config);

    // Used to save callbacks and run them at a later time.
    EXPECT_CALL(*decoder_, Decode(_, _))
        .WillRepeatedly(Invoke(this, &AudioRendererImplTest::DecodeDecoder));
    EXPECT_CALL(*decoder_, Reset(_))
        .WillRepeatedly(Invoke(this, &AudioRendererImplTest::ResetDecoder));

    // Mock out demuxer reads.
    EXPECT_CALL(demuxer_stream_, Read(_)).WillRepeatedly(
        RunCallback<0>(DemuxerStream::kOk,
                       scoped_refptr<DecoderBuffer>(new DecoderBuffer(0))));
    EXPECT_CALL(demuxer_stream_, SupportsConfigChanges())
        .WillRepeatedly(Return(true));
    AudioParameters out_params(AudioParameters::AUDIO_PCM_LOW_LATENCY,
                               kChannelLayout,
                               kOutputSamplesPerSecond,
                               SampleFormatToBytesPerChannel(kSampleFormat) * 8,
                               512);
    hardware_config_.UpdateOutputConfig(out_params);
    ScopedVector<AudioDecoder> decoders;
    decoders.push_back(decoder_);
    sink_ = new FakeAudioRendererSink();
    renderer_.reset(new AudioRendererImpl(message_loop_.task_runner(),
                                          sink_.get(), std::move(decoders),
                                          hardware_config_, new MediaLog()));
    renderer_->tick_clock_.reset(tick_clock_);
    tick_clock_->Advance(base::TimeDelta::FromSeconds(1));
  }

  virtual ~AudioRendererImplTest() {
    SCOPED_TRACE("~AudioRendererImplTest()");
  }

  void ExpectUnsupportedAudioDecoder() {
    EXPECT_CALL(*decoder_, Initialize(_, _, _, _))
        .WillOnce(DoAll(SaveArg<3>(&output_cb_), RunCallback<2>(false)));
  }

  void OnStatistics(const PipelineStatistics& stats) {
    last_statistics_.audio_memory_usage += stats.audio_memory_usage;
  }

  MOCK_METHOD1(OnBufferingStateChange, void(BufferingState));
  MOCK_METHOD1(OnError, void(PipelineStatus));
  MOCK_METHOD0(OnWaitingForDecryptionKey, void(void));

  void InitializeRenderer(const PipelineStatusCB& pipeline_status_cb) {
    EXPECT_CALL(*this, OnWaitingForDecryptionKey()).Times(0);
    renderer_->Initialize(
        &demuxer_stream_, pipeline_status_cb, nullptr,
        base::Bind(&AudioRendererImplTest::OnStatistics,
                   base::Unretained(this)),
        base::Bind(&AudioRendererImplTest::OnBufferingStateChange,
                   base::Unretained(this)),
        base::Bind(&AudioRendererImplTest::OnEnded, base::Unretained(this)),
        base::Bind(&AudioRendererImplTest::OnError, base::Unretained(this)),
        base::Bind(&AudioRendererImplTest::OnWaitingForDecryptionKey,
                   base::Unretained(this)));
  }

  void Initialize() {
    EXPECT_CALL(*decoder_, Initialize(_, _, _, _))
        .WillOnce(DoAll(SaveArg<3>(&output_cb_), RunCallback<2>(true)));
    InitializeWithStatus(PIPELINE_OK);

    next_timestamp_.reset(new AudioTimestampHelper(kInputSamplesPerSecond));
  }

  void InitializeWithStatus(PipelineStatus expected) {
    SCOPED_TRACE(base::StringPrintf("InitializeWithStatus(%d)", expected));

    WaitableMessageLoopEvent event;
    InitializeRenderer(event.GetPipelineStatusCB());
    event.RunAndWaitForStatus(expected);

    // We should have no reads.
    EXPECT_TRUE(decode_cb_.is_null());
  }

  void InitializeAndDestroy() {
    EXPECT_CALL(*decoder_, Initialize(_, _, _, _))
        .WillOnce(RunCallback<2>(true));

    WaitableMessageLoopEvent event;
    InitializeRenderer(event.GetPipelineStatusCB());

    // Destroy the |renderer_| before we let the MessageLoop run, this simulates
    // an interleaving in which we end up destroying the |renderer_| while the
    // OnDecoderSelected callback is in flight.
    renderer_.reset();
    event.RunAndWaitForStatus(PIPELINE_ERROR_ABORT);
  }

  void InitializeAndDestroyDuringDecoderInit() {
    EXPECT_CALL(*decoder_, Initialize(_, _, _, _))
        .WillOnce(EnterPendingDecoderInitStateAction(this));

    WaitableMessageLoopEvent event;
    InitializeRenderer(event.GetPipelineStatusCB());
    base::RunLoop().RunUntilIdle();
    DCHECK(!init_decoder_cb_.is_null());

    renderer_.reset();
    event.RunAndWaitForStatus(PIPELINE_ERROR_ABORT);
  }

  void EnterPendingDecoderInitState(const AudioDecoder::InitCB& cb) {
    init_decoder_cb_ = cb;
  }

  void FlushDuringPendingRead() {
    SCOPED_TRACE("FlushDuringPendingRead()");
    WaitableMessageLoopEvent flush_event;
    renderer_->Flush(flush_event.GetClosure());
    SatisfyPendingRead(InputFrames(256));
    flush_event.RunAndWait();

    EXPECT_FALSE(IsReadPending());
  }

  void Preroll() {
    Preroll(base::TimeDelta(), base::TimeDelta(), PIPELINE_OK);
  }

  void Preroll(base::TimeDelta start_timestamp,
               base::TimeDelta first_timestamp,
               PipelineStatus expected) {
    SCOPED_TRACE(base::StringPrintf("Preroll(%" PRId64 ", %d)",
                                    first_timestamp.InMilliseconds(),
                                    expected));
    next_timestamp_->SetBaseTimestamp(first_timestamp);

    // Fill entire buffer to complete prerolling.
    renderer_->SetMediaTime(start_timestamp);
    renderer_->StartPlaying();
    WaitForPendingRead();
    EXPECT_CALL(*this, OnBufferingStateChange(BUFFERING_HAVE_ENOUGH));
    DeliverRemainingAudio();
  }

  void StartTicking() {
    renderer_->StartTicking();
    renderer_->SetPlaybackRate(1.0);
  }

  void StopTicking() { renderer_->StopTicking(); }

  bool IsReadPending() const {
    return !decode_cb_.is_null();
  }

  void WaitForPendingRead() {
    SCOPED_TRACE("WaitForPendingRead()");
    if (!decode_cb_.is_null())
      return;

    DCHECK(wait_for_pending_decode_cb_.is_null());

    WaitableMessageLoopEvent event;
    wait_for_pending_decode_cb_ = event.GetClosure();
    event.RunAndWait();

    DCHECK(!decode_cb_.is_null());
    DCHECK(wait_for_pending_decode_cb_.is_null());
  }

  // Delivers decoded frames to |renderer_|.
  void SatisfyPendingRead(InputFrames frames) {
    CHECK_GT(frames.value, 0);
    CHECK(!decode_cb_.is_null());

    scoped_refptr<AudioBuffer> buffer =
        MakeAudioBuffer<float>(kSampleFormat,
                               kChannelLayout,
                               kChannelCount,
                               kInputSamplesPerSecond,
                               1.0f,
                               0.0f,
                               frames.value,
                               next_timestamp_->GetTimestamp());
    next_timestamp_->AddFrames(frames.value);

    DeliverBuffer(AudioDecoder::kOk, buffer);
  }

  void DeliverEndOfStream() {
    DCHECK(!decode_cb_.is_null());

    // Return EOS buffer to trigger EOS frame.
    EXPECT_CALL(demuxer_stream_, Read(_))
        .WillOnce(RunCallback<0>(DemuxerStream::kOk,
                                 DecoderBuffer::CreateEOSBuffer()));

    // Satify pending |decode_cb_| to trigger a new DemuxerStream::Read().
    message_loop_.PostTask(
        FROM_HERE,
        base::Bind(base::ResetAndReturn(&decode_cb_), AudioDecoder::kOk));

    WaitForPendingRead();

    message_loop_.PostTask(
        FROM_HERE,
        base::Bind(base::ResetAndReturn(&decode_cb_), AudioDecoder::kOk));

    base::RunLoop().RunUntilIdle();
    EXPECT_EQ(last_statistics_.audio_memory_usage,
              renderer_->algorithm_->GetMemoryUsage());
  }

  // Delivers frames until |renderer_|'s internal buffer is full and no longer
  // has pending reads.
  void DeliverRemainingAudio() {
    while (frames_remaining_in_buffer().value > 0) {
      SatisfyPendingRead(InputFrames(256));
    }
  }

  // Attempts to consume |requested_frames| frames from |renderer_|'s internal
  // buffer. Returns true if and only if all of |requested_frames| were able
  // to be consumed.
  bool ConsumeBufferedData(OutputFrames requested_frames,
                           uint32_t delay_frames) {
    scoped_ptr<AudioBus> bus =
        AudioBus::Create(kChannels, requested_frames.value);
    int frames_read = 0;
    EXPECT_TRUE(sink_->Render(bus.get(), delay_frames, &frames_read));
    return frames_read == requested_frames.value;
  }

  bool ConsumeBufferedData(OutputFrames requested_frames) {
    return ConsumeBufferedData(requested_frames, 0);
  }

  base::TimeTicks ConvertMediaTime(base::TimeDelta timestamp,
                                   bool* is_time_moving) {
    std::vector<base::TimeTicks> wall_clock_times;
    *is_time_moving = renderer_->GetWallClockTimes(
        std::vector<base::TimeDelta>(1, timestamp), &wall_clock_times);
    return wall_clock_times[0];
  }

  base::TimeTicks CurrentMediaWallClockTime(bool* is_time_moving) {
    std::vector<base::TimeTicks> wall_clock_times;
    *is_time_moving = renderer_->GetWallClockTimes(
        std::vector<base::TimeDelta>(), &wall_clock_times);
    return wall_clock_times[0];
  }

  OutputFrames frames_buffered() {
    return OutputFrames(renderer_->algorithm_->frames_buffered());
  }

  OutputFrames buffer_capacity() {
    return OutputFrames(renderer_->algorithm_->QueueCapacity());
  }

  OutputFrames frames_remaining_in_buffer() {
    // This can happen if too much data was delivered, in which case the buffer
    // will accept the data but not increase capacity.
    if (frames_buffered().value > buffer_capacity().value) {
      return OutputFrames(0);
    }
    return OutputFrames(buffer_capacity().value - frames_buffered().value);
  }

  void force_config_change() {
    renderer_->OnConfigChange();
  }

  InputFrames converter_input_frames_left() const {
    return InputFrames(
        renderer_->buffer_converter_->input_frames_left_for_testing());
  }

  bool splicer_has_next_buffer() const {
    return renderer_->splicer_->HasNextBuffer();
  }

  base::TimeDelta CurrentMediaTime() {
    return renderer_->CurrentMediaTime();
  }

  bool ended() const { return ended_; }

  // Fixture members.
  base::MessageLoop message_loop_;
  scoped_ptr<AudioRendererImpl> renderer_;
  scoped_refptr<FakeAudioRendererSink> sink_;
  AudioHardwareConfig hardware_config_;
  base::SimpleTestTickClock* tick_clock_;
  PipelineStatistics last_statistics_;

 private:
  void DecodeDecoder(const scoped_refptr<DecoderBuffer>& buffer,
                     const AudioDecoder::DecodeCB& decode_cb) {
    // TODO(scherkus): Make this a DCHECK after threading semantics are fixed.
    if (base::MessageLoop::current() != &message_loop_) {
      message_loop_.PostTask(FROM_HERE, base::Bind(
          &AudioRendererImplTest::DecodeDecoder,
          base::Unretained(this), buffer, decode_cb));
      return;
    }

    CHECK(decode_cb_.is_null()) << "Overlapping decodes are not permitted";
    decode_cb_ = decode_cb;

    // Wake up WaitForPendingRead() if needed.
    if (!wait_for_pending_decode_cb_.is_null())
      base::ResetAndReturn(&wait_for_pending_decode_cb_).Run();
  }

  void ResetDecoder(const base::Closure& reset_cb) {
    if (!decode_cb_.is_null()) {
      // |reset_cb| will be called in DeliverBuffer(), after the decoder is
      // flushed.
      reset_cb_ = reset_cb;
      return;
    }

    message_loop_.PostTask(FROM_HERE, reset_cb);
  }

  void DeliverBuffer(AudioDecoder::Status status,
                     const scoped_refptr<AudioBuffer>& buffer) {
    CHECK(!decode_cb_.is_null());

    if (buffer.get() && !buffer->end_of_stream())
      output_cb_.Run(buffer);
    base::ResetAndReturn(&decode_cb_).Run(status);

    if (!reset_cb_.is_null())
      base::ResetAndReturn(&reset_cb_).Run();

    base::RunLoop().RunUntilIdle();
  }

  void OnEnded() {
    CHECK(!ended_);
    ended_ = true;
  }

  MockDemuxerStream demuxer_stream_;
  MockAudioDecoder* decoder_;

  // Used for satisfying reads.
  AudioDecoder::OutputCB output_cb_;
  AudioDecoder::DecodeCB decode_cb_;
  base::Closure reset_cb_;
  scoped_ptr<AudioTimestampHelper> next_timestamp_;

  // Run during DecodeDecoder() to unblock WaitForPendingRead().
  base::Closure wait_for_pending_decode_cb_;

  AudioDecoder::InitCB init_decoder_cb_;
  bool ended_;

  DISALLOW_COPY_AND_ASSIGN(AudioRendererImplTest);
};

TEST_F(AudioRendererImplTest, Initialize_Successful) {
  Initialize();
}

TEST_F(AudioRendererImplTest, Initialize_DecoderInitFailure) {
  ExpectUnsupportedAudioDecoder();
  InitializeWithStatus(DECODER_ERROR_NOT_SUPPORTED);
}

TEST_F(AudioRendererImplTest, Preroll) {
  Initialize();
  Preroll();
}

TEST_F(AudioRendererImplTest, StartTicking) {
  Initialize();
  Preroll();
  StartTicking();

  // Drain internal buffer, we should have a pending read.
  EXPECT_TRUE(ConsumeBufferedData(frames_buffered()));
  WaitForPendingRead();
}

TEST_F(AudioRendererImplTest, EndOfStream) {
  Initialize();
  Preroll();
  StartTicking();

  // Drain internal buffer, we should have a pending read.
  EXPECT_TRUE(ConsumeBufferedData(frames_buffered()));
  WaitForPendingRead();

  // Forcefully trigger underflow.
  EXPECT_FALSE(ConsumeBufferedData(OutputFrames(1)));
  EXPECT_CALL(*this, OnBufferingStateChange(BUFFERING_HAVE_NOTHING));

  // Fulfill the read with an end-of-stream buffer. Doing so should change our
  // buffering state so playback resumes.
  EXPECT_CALL(*this, OnBufferingStateChange(BUFFERING_HAVE_ENOUGH));
  DeliverEndOfStream();

  // Consume all remaining data. We shouldn't have signal ended yet.
  EXPECT_TRUE(ConsumeBufferedData(frames_buffered()));
  base::RunLoop().RunUntilIdle();
  EXPECT_FALSE(ended());

  // Ended should trigger on next render call.
  EXPECT_FALSE(ConsumeBufferedData(OutputFrames(1)));
  base::RunLoop().RunUntilIdle();
  EXPECT_TRUE(ended());
}

TEST_F(AudioRendererImplTest, Underflow) {
  Initialize();
  Preroll();
  StartTicking();

  // Drain internal buffer, we should have a pending read.
  EXPECT_TRUE(ConsumeBufferedData(frames_buffered()));
  WaitForPendingRead();

  // Verify the next FillBuffer() call triggers a buffering state change
  // update.
  EXPECT_CALL(*this, OnBufferingStateChange(BUFFERING_HAVE_NOTHING));
  EXPECT_FALSE(ConsumeBufferedData(OutputFrames(1)));

  // Verify we're still not getting audio data.
  EXPECT_EQ(0, frames_buffered().value);
  EXPECT_FALSE(ConsumeBufferedData(OutputFrames(1)));

  // Deliver enough data to have enough for buffering.
  EXPECT_CALL(*this, OnBufferingStateChange(BUFFERING_HAVE_ENOUGH));
  DeliverRemainingAudio();

  // Verify we're getting audio data.
  EXPECT_TRUE(ConsumeBufferedData(OutputFrames(1)));
}

TEST_F(AudioRendererImplTest, Underflow_CapacityResetsAfterFlush) {
  Initialize();
  Preroll();
  StartTicking();

  // Drain internal buffer, we should have a pending read.
  EXPECT_TRUE(ConsumeBufferedData(frames_buffered()));
  WaitForPendingRead();

  // Verify the next FillBuffer() call triggers the underflow callback
  // since the decoder hasn't delivered any data after it was drained.
  OutputFrames initial_capacity = buffer_capacity();
  EXPECT_CALL(*this, OnBufferingStateChange(BUFFERING_HAVE_NOTHING));
  EXPECT_FALSE(ConsumeBufferedData(OutputFrames(1)));

  // Verify that the buffer capacity increased as a result of underflowing.
  EXPECT_GT(buffer_capacity().value, initial_capacity.value);

  // Verify that the buffer capacity is restored to the |initial_capacity|.
  FlushDuringPendingRead();
  EXPECT_EQ(buffer_capacity().value, initial_capacity.value);
}

TEST_F(AudioRendererImplTest, Underflow_Flush) {
  Initialize();
  Preroll();
  StartTicking();

  // Force underflow.
  EXPECT_TRUE(ConsumeBufferedData(frames_buffered()));
  WaitForPendingRead();
  EXPECT_CALL(*this, OnBufferingStateChange(BUFFERING_HAVE_NOTHING));
  EXPECT_FALSE(ConsumeBufferedData(OutputFrames(1)));
  WaitForPendingRead();
  StopTicking();

  // We shouldn't expect another buffering state change when flushing.
  FlushDuringPendingRead();
}

TEST_F(AudioRendererImplTest, PendingRead_Flush) {
  Initialize();

  Preroll();
  StartTicking();

  // Partially drain internal buffer so we get a pending read.
  EXPECT_TRUE(ConsumeBufferedData(OutputFrames(256)));
  WaitForPendingRead();

  StopTicking();

  EXPECT_TRUE(IsReadPending());

  // Flush and expect to be notified that we have nothing.
  EXPECT_CALL(*this, OnBufferingStateChange(BUFFERING_HAVE_NOTHING));
  FlushDuringPendingRead();

  // Preroll again to a different timestamp and verify it completed normally.
  const base::TimeDelta seek_timestamp =
      base::TimeDelta::FromMilliseconds(1000);
  Preroll(seek_timestamp, seek_timestamp, PIPELINE_OK);
}

TEST_F(AudioRendererImplTest, PendingRead_Destroy) {
  Initialize();

  Preroll();
  StartTicking();

  // Partially drain internal buffer so we get a pending read.
  EXPECT_TRUE(ConsumeBufferedData(OutputFrames(256)));
  WaitForPendingRead();

  StopTicking();

  EXPECT_TRUE(IsReadPending());

  renderer_.reset();
}

TEST_F(AudioRendererImplTest, PendingFlush_Destroy) {
  Initialize();

  Preroll();
  StartTicking();

  // Partially drain internal buffer so we get a pending read.
  EXPECT_TRUE(ConsumeBufferedData(OutputFrames(256)));
  WaitForPendingRead();

  StopTicking();

  EXPECT_TRUE(IsReadPending());

  // Start flushing.
  WaitableMessageLoopEvent flush_event;
  renderer_->Flush(flush_event.GetClosure());

  EXPECT_CALL(*this, OnBufferingStateChange(BUFFERING_HAVE_NOTHING));
  SatisfyPendingRead(InputFrames(256));

  renderer_.reset();
}

TEST_F(AudioRendererImplTest, InitializeThenDestroy) {
  InitializeAndDestroy();
}

TEST_F(AudioRendererImplTest, InitializeThenDestroyDuringDecoderInit) {
  InitializeAndDestroyDuringDecoderInit();
}

TEST_F(AudioRendererImplTest, ConfigChangeDrainsConverter) {
  Initialize();
  Preroll();
  StartTicking();

  // Drain internal buffer, we should have a pending read.
  EXPECT_TRUE(ConsumeBufferedData(frames_buffered()));
  WaitForPendingRead();

  // Deliver a little bit of data.  Use an odd data size to ensure there is data
  // left in the AudioBufferConverter.  Ensure no buffers are in the splicer.
  SatisfyPendingRead(InputFrames(2053));
  EXPECT_FALSE(splicer_has_next_buffer());
  EXPECT_GT(converter_input_frames_left().value, 0);

  // Force a config change and then ensure all buffered data has been put into
  // the splicer.
  force_config_change();
  EXPECT_TRUE(splicer_has_next_buffer());
  EXPECT_EQ(0, converter_input_frames_left().value);
}

TEST_F(AudioRendererImplTest, CurrentMediaTimeBehavior) {
  Initialize();
  Preroll();
  StartTicking();

  AudioTimestampHelper timestamp_helper(kOutputSamplesPerSecond);
  timestamp_helper.SetBaseTimestamp(base::TimeDelta());

  // Time should be the starting timestamp as nothing has been consumed yet.
  EXPECT_EQ(timestamp_helper.GetTimestamp(), CurrentMediaTime());

  const OutputFrames frames_to_consume(frames_buffered().value / 3);
  const base::TimeDelta kConsumptionDuration =
      timestamp_helper.GetFrameDuration(frames_to_consume.value);

  // Render() has not be called yet, thus no data has been consumed, so
  // advancing tick clock must not change the media time.
  tick_clock_->Advance(kConsumptionDuration);
  EXPECT_EQ(timestamp_helper.GetTimestamp(), CurrentMediaTime());

  // Consume some audio data.
  EXPECT_TRUE(ConsumeBufferedData(frames_to_consume));
  WaitForPendingRead();

  // Time shouldn't change just yet because we've only sent the initial audio
  // data to the hardware.
  EXPECT_EQ(timestamp_helper.GetTimestamp(), CurrentMediaTime());

  // Advancing the tick clock now should result in an estimated media time.
  tick_clock_->Advance(kConsumptionDuration);
  EXPECT_EQ(timestamp_helper.GetTimestamp() + kConsumptionDuration,
            CurrentMediaTime());

  // Consume some more audio data.
  EXPECT_TRUE(ConsumeBufferedData(frames_to_consume));

  // Time should change now that Render() has been called a second time.
  timestamp_helper.AddFrames(frames_to_consume.value);
  EXPECT_EQ(timestamp_helper.GetTimestamp(), CurrentMediaTime());

  // Advance current time well past all played audio to simulate an irregular or
  // delayed OS callback. The value should be clamped to whats been rendered.
  timestamp_helper.AddFrames(frames_to_consume.value);
  tick_clock_->Advance(kConsumptionDuration * 2);
  const base::TimeDelta last_media_time = CurrentMediaTime();
  EXPECT_EQ(timestamp_helper.GetTimestamp(), last_media_time);

  // Consume some more audio data, but provide a delay value which is at odds
  // with the amount of time advanced so far; this would normally cause the
  // media time to go backwards relative to its last value.
  EXPECT_TRUE(ConsumeBufferedData(frames_to_consume, 1));

  // Current time should never go backwards even for irregular OS callbacks and
  // those with odd / wrong delay values.
  EXPECT_EQ(last_media_time, CurrentMediaTime());

  // Stop ticking, the media time should be clamped to what's been rendered.
  StopTicking();
  EXPECT_EQ(timestamp_helper.GetTimestamp(), CurrentMediaTime());
  tick_clock_->Advance(kConsumptionDuration * 2);
  timestamp_helper.AddFrames(frames_to_consume.value);
  EXPECT_EQ(timestamp_helper.GetTimestamp(), CurrentMediaTime());
}

TEST_F(AudioRendererImplTest, RenderingDelayedForEarlyStartTime) {
  Initialize();

  // Choose a first timestamp a few buffers into the future, which ends halfway
  // through the desired output buffer; this allows for maximum test coverage.
  const double kBuffers = 4.5;
  const base::TimeDelta first_timestamp = base::TimeDelta::FromSecondsD(
      hardware_config_.GetOutputBufferSize() * kBuffers /
      hardware_config_.GetOutputSampleRate());

  Preroll(base::TimeDelta(), first_timestamp, PIPELINE_OK);
  StartTicking();

  // Verify the first few buffers are silent.
  scoped_ptr<AudioBus> bus =
      AudioBus::Create(hardware_config_.GetOutputConfig());
  int frames_read = 0;
  for (int i = 0; i < std::floor(kBuffers); ++i) {
    EXPECT_TRUE(sink_->Render(bus.get(), 0, &frames_read));
    EXPECT_EQ(frames_read, bus->frames());
    for (int j = 0; j < bus->frames(); ++j)
      ASSERT_FLOAT_EQ(0.0f, bus->channel(0)[j]);
    WaitForPendingRead();
    DeliverRemainingAudio();
  }

  // Verify the last buffer is half silence and half real data.
  EXPECT_TRUE(sink_->Render(bus.get(), 0, &frames_read));
  EXPECT_EQ(frames_read, bus->frames());
  const int zero_frames =
      bus->frames() * (kBuffers - static_cast<int>(kBuffers));

  for (int i = 0; i < zero_frames; ++i)
    ASSERT_FLOAT_EQ(0.0f, bus->channel(0)[i]);
  for (int i = zero_frames; i < bus->frames(); ++i)
    ASSERT_NE(0.0f, bus->channel(0)[i]);
}

TEST_F(AudioRendererImplTest, RenderingDelayDoesNotOverflow) {
  Initialize();

  // Choose a first timestamp as far into the future as possible. Without care
  // this can cause an overflow in rendering arithmetic.
  Preroll(base::TimeDelta(), base::TimeDelta::Max(), PIPELINE_OK);
  StartTicking();
  EXPECT_TRUE(ConsumeBufferedData(OutputFrames(1)));
}

TEST_F(AudioRendererImplTest, ImmediateEndOfStream) {
  Initialize();
  {
    SCOPED_TRACE("Preroll()");
    renderer_->StartPlaying();
    WaitForPendingRead();
    EXPECT_CALL(*this, OnBufferingStateChange(BUFFERING_HAVE_ENOUGH));
    DeliverEndOfStream();
  }
  StartTicking();

  // Read a single frame. We shouldn't be able to satisfy it.
  EXPECT_FALSE(ended());
  EXPECT_FALSE(ConsumeBufferedData(OutputFrames(1)));
  base::RunLoop().RunUntilIdle();
  EXPECT_TRUE(ended());
}

TEST_F(AudioRendererImplTest, OnRenderErrorCausesDecodeError) {
  Initialize();
  Preroll();
  StartTicking();

  EXPECT_CALL(*this, OnError(AUDIO_RENDERER_ERROR));
  sink_->OnRenderError();
  base::RunLoop().RunUntilIdle();
}

// Test for AudioRendererImpl calling Pause()/Play() on the sink when the
// playback rate is set to zero and non-zero.
TEST_F(AudioRendererImplTest, SetPlaybackRate) {
  Initialize();
  Preroll();

  // Rendering hasn't started. Sink should always be paused.
  EXPECT_EQ(FakeAudioRendererSink::kPaused, sink_->state());
  renderer_->SetPlaybackRate(0.0);
  EXPECT_EQ(FakeAudioRendererSink::kPaused, sink_->state());
  renderer_->SetPlaybackRate(1.0);
  EXPECT_EQ(FakeAudioRendererSink::kPaused, sink_->state());

  // Rendering has started with non-zero rate. Rate changes will affect sink
  // state.
  renderer_->StartTicking();
  EXPECT_EQ(FakeAudioRendererSink::kPlaying, sink_->state());
  renderer_->SetPlaybackRate(0.0);
  EXPECT_EQ(FakeAudioRendererSink::kPaused, sink_->state());
  renderer_->SetPlaybackRate(1.0);
  EXPECT_EQ(FakeAudioRendererSink::kPlaying, sink_->state());

  // Rendering has stopped. Sink should be paused.
  renderer_->StopTicking();
  EXPECT_EQ(FakeAudioRendererSink::kPaused, sink_->state());

  // Start rendering with zero playback rate. Sink should be paused until
  // non-zero rate is set.
  renderer_->SetPlaybackRate(0.0);
  renderer_->StartTicking();
  EXPECT_EQ(FakeAudioRendererSink::kPaused, sink_->state());
  renderer_->SetPlaybackRate(1.0);
  EXPECT_EQ(FakeAudioRendererSink::kPlaying, sink_->state());
}

TEST_F(AudioRendererImplTest, TimeSourceBehavior) {
  Initialize();
  Preroll();

  AudioTimestampHelper timestamp_helper(kOutputSamplesPerSecond);
  timestamp_helper.SetBaseTimestamp(base::TimeDelta());

  // Prior to start, time should be shown as not moving.
  bool is_time_moving = false;
  EXPECT_EQ(base::TimeTicks(),
            ConvertMediaTime(base::TimeDelta(), &is_time_moving));
  EXPECT_FALSE(is_time_moving);

  EXPECT_EQ(base::TimeTicks(), CurrentMediaWallClockTime(&is_time_moving));
  EXPECT_FALSE(is_time_moving);

  // Start ticking, but use a zero playback rate, time should still be stopped
  // until a positive playback rate is set and the first Render() is called.
  renderer_->SetPlaybackRate(0.0);
  StartTicking();
  EXPECT_EQ(base::TimeTicks(), CurrentMediaWallClockTime(&is_time_moving));
  EXPECT_FALSE(is_time_moving);
  renderer_->SetPlaybackRate(1.0);
  EXPECT_EQ(base::TimeTicks(), CurrentMediaWallClockTime(&is_time_moving));
  EXPECT_FALSE(is_time_moving);
  renderer_->SetPlaybackRate(1.0);

  // Issue the first render call to start time moving.
  OutputFrames frames_to_consume(frames_buffered().value / 2);
  EXPECT_TRUE(ConsumeBufferedData(frames_to_consume));
  WaitForPendingRead();

  // Time shouldn't change just yet because we've only sent the initial audio
  // data to the hardware.
  EXPECT_EQ(tick_clock_->NowTicks(),
            ConvertMediaTime(base::TimeDelta(), &is_time_moving));
  EXPECT_TRUE(is_time_moving);

  // Consume some more audio data.
  frames_to_consume = frames_buffered();
  tick_clock_->Advance(
      base::TimeDelta::FromSecondsD(1.0 / kOutputSamplesPerSecond));
  EXPECT_TRUE(ConsumeBufferedData(frames_to_consume));

  // Time should change now that the audio hardware has called back.
  const base::TimeTicks wall_clock_time_zero =
      tick_clock_->NowTicks() -
      timestamp_helper.GetFrameDuration(frames_to_consume.value);
  EXPECT_EQ(wall_clock_time_zero,
            ConvertMediaTime(base::TimeDelta(), &is_time_moving));
  EXPECT_TRUE(is_time_moving);

  // Store current media time before advancing the tick clock since the call is
  // compensated based on TimeTicks::Now().
  const base::TimeDelta current_media_time = renderer_->CurrentMediaTime();

  // The current wall clock time should change as our tick clock advances, up
  // until we've reached the end of played out frames.
  const int kSteps = 4;
  const base::TimeDelta kAdvanceDelta =
      timestamp_helper.GetFrameDuration(frames_to_consume.value) / kSteps;

  for (int i = 0; i < kSteps; ++i) {
    tick_clock_->Advance(kAdvanceDelta);
    EXPECT_EQ(tick_clock_->NowTicks(),
              CurrentMediaWallClockTime(&is_time_moving));
    EXPECT_TRUE(is_time_moving);
  }

  // Converting the current media time should be relative to wall clock zero.
  EXPECT_EQ(wall_clock_time_zero + kSteps * kAdvanceDelta,
            ConvertMediaTime(current_media_time, &is_time_moving));
  EXPECT_TRUE(is_time_moving);

  // Advancing once more will exceed the amount of played out frames finally.
  base::TimeTicks current_time = tick_clock_->NowTicks();
  tick_clock_->Advance(
      base::TimeDelta::FromSecondsD(1.0 / kOutputSamplesPerSecond));
  EXPECT_EQ(current_time, CurrentMediaWallClockTime(&is_time_moving));
  EXPECT_TRUE(is_time_moving);

  StopTicking();
  DeliverRemainingAudio();

  // Elapse a lot of time between StopTicking() and the next Render() call.
  const base::TimeDelta kOneSecond = base::TimeDelta::FromSeconds(1);
  tick_clock_->Advance(kOneSecond);
  StartTicking();

  // Time should be stopped until the next render call.
  EXPECT_EQ(current_time, CurrentMediaWallClockTime(&is_time_moving));
  EXPECT_FALSE(is_time_moving);

  // Consume some buffered data with a small delay.
  uint32_t delay_frames = 500;
  base::TimeDelta delay_time = base::TimeDelta::FromMicroseconds(
      std::round(delay_frames * kOutputMicrosPerFrame));

  frames_to_consume.value = frames_buffered().value / 16;
  EXPECT_TRUE(ConsumeBufferedData(frames_to_consume, delay_frames));

  // Verify time is adjusted for the current delay.
  current_time = tick_clock_->NowTicks() + delay_time;
  EXPECT_EQ(current_time, CurrentMediaWallClockTime(&is_time_moving));
  EXPECT_TRUE(is_time_moving);
  EXPECT_EQ(current_time,
            ConvertMediaTime(renderer_->CurrentMediaTime(), &is_time_moving));
  EXPECT_TRUE(is_time_moving);

  // Advance far enough that we shouldn't be clamped to current time (tested
  // already above).
  tick_clock_->Advance(kOneSecond);
  EXPECT_EQ(
      current_time + timestamp_helper.GetFrameDuration(frames_to_consume.value),
      CurrentMediaWallClockTime(&is_time_moving));
  EXPECT_TRUE(is_time_moving);
}

}  // namespace media