summaryrefslogtreecommitdiffstats
path: root/mojo/edk/system/message_pipe_dispatcher.cc
blob: 357386428e873295cc35d14d9e1e14ae3f8235af (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "mojo/edk/system/message_pipe_dispatcher.h"

#include "base/bind.h"
#include "base/debug/stack_trace.h"
#include "base/logging.h"
#include "base/message_loop/message_loop.h"
#include "mojo/edk/embedder/embedder_internal.h"
#include "mojo/edk/embedder/platform_handle_utils.h"
#include "mojo/edk/embedder/platform_shared_buffer.h"
#include "mojo/edk/embedder/platform_support.h"
#include "mojo/edk/system/broker.h"
#include "mojo/edk/system/configuration.h"
#include "mojo/edk/system/message_in_transit.h"
#include "mojo/edk/system/options_validation.h"
#include "mojo/edk/system/transport_data.h"

namespace mojo {
namespace edk {

namespace {

const size_t kInvalidMessagePipeHandleIndex = static_cast<size_t>(-1);

struct MOJO_ALIGNAS(8) SerializedMessagePipeHandleDispatcher {
  bool transferable;
  bool write_error;
  uint64_t pipe_id;  // If transferable is false.
  // The following members are only set if transferable is true.
  // Could be |kInvalidMessagePipeHandleIndex| if the other endpoint of the MP
  // was closed.
  size_t platform_handle_index;

  size_t shared_memory_handle_index;  // (Or |kInvalidMessagePipeHandleIndex|.)
  uint32_t shared_memory_size;

  size_t serialized_read_buffer_size;
  size_t serialized_write_buffer_size;
  size_t serialized_message_queue_size;

  // These are the FDs required as part of serializing channel_ and
  // message_queue_. This is only used on POSIX.
  size_t serialized_fds_index;  // (Or |kInvalidMessagePipeHandleIndex|.)
  size_t serialized_read_fds_length;
  size_t serialized_write_fds_length;
  size_t serialized_message_fds_length;
};

char* SerializeBuffer(char* start, std::vector<char>* buffer) {
  if (buffer->size())
    memcpy(start, &(*buffer)[0], buffer->size());
  return start + buffer->size();
}

bool GetHandle(size_t index,
               PlatformHandleVector* platform_handles,
               ScopedPlatformHandle* handle) {
  if (index == kInvalidMessagePipeHandleIndex)
    return true;

  if (!platform_handles || index >= platform_handles->size()) {
    LOG(ERROR)
        << "Invalid serialized message pipe dispatcher (missing handles)";
    return false;
  }

  // We take ownership of the handle, so we have to invalidate the one in
  // |platform_handles|.
  handle->reset((*platform_handles)[index]);
  (*platform_handles)[index] = PlatformHandle();
  return true;
}

#if defined(OS_POSIX)
void ClosePlatformHandles(std::vector<int>* fds) {
  for (size_t i = 0; i < fds->size(); ++i)
    PlatformHandle((*fds)[i]).CloseIfNecessary();
}
#endif

}  // namespace

// MessagePipeDispatcher -------------------------------------------------------

const MojoCreateMessagePipeOptions
    MessagePipeDispatcher::kDefaultCreateOptions = {
        static_cast<uint32_t>(sizeof(MojoCreateMessagePipeOptions)),
        MOJO_CREATE_MESSAGE_PIPE_OPTIONS_FLAG_NONE};

MojoResult MessagePipeDispatcher::ValidateCreateOptions(
    const MojoCreateMessagePipeOptions* in_options,
    MojoCreateMessagePipeOptions* out_options) {
  const MojoCreateMessagePipeOptionsFlags kKnownFlags =
      MOJO_CREATE_MESSAGE_PIPE_OPTIONS_FLAG_NONE |
      MOJO_CREATE_MESSAGE_PIPE_OPTIONS_FLAG_TRANSFERABLE;

  *out_options = kDefaultCreateOptions;
  if (!in_options)
    return MOJO_RESULT_OK;

  UserOptionsReader<MojoCreateMessagePipeOptions> reader(in_options);
  if (!reader.is_valid())
    return MOJO_RESULT_INVALID_ARGUMENT;

  if (!OPTIONS_STRUCT_HAS_MEMBER(MojoCreateMessagePipeOptions, flags, reader))
    return MOJO_RESULT_OK;
  if ((reader.options().flags & ~kKnownFlags))
    return MOJO_RESULT_UNIMPLEMENTED;
  out_options->flags = reader.options().flags;

  // Checks for fields beyond |flags|:

  // (Nothing here yet.)

  return MOJO_RESULT_OK;
}

void MessagePipeDispatcher::Init(
    ScopedPlatformHandle message_pipe,
    char* serialized_read_buffer, size_t serialized_read_buffer_size,
    char* serialized_write_buffer, size_t serialized_write_buffer_size,
    std::vector<int>* serialized_read_fds,
    std::vector<int>* serialized_write_fds) {
  CHECK(transferable_);
  if (message_pipe.get().is_valid()) {
    channel_ = RawChannel::Create(message_pipe.Pass());

    // TODO(jam): It's probably cleaner to pass this in Init call.
    channel_->SetSerializedData(
        serialized_read_buffer, serialized_read_buffer_size,
        serialized_write_buffer, serialized_write_buffer_size,
        serialized_read_fds, serialized_write_fds);
    internal::g_io_thread_task_runner->PostTask(
        FROM_HERE, base::Bind(&MessagePipeDispatcher::InitOnIO, this));
  }
}

void MessagePipeDispatcher::InitNonTransferable(uint64_t pipe_id) {
  CHECK(!transferable_);
  pipe_id_ = pipe_id;
}

void MessagePipeDispatcher::InitOnIO() {
  base::AutoLock locker(lock());
  CHECK(transferable_);
  calling_init_ = true;
  if (channel_)
    channel_->Init(this);
  calling_init_ = false;
}

void MessagePipeDispatcher::CloseOnIO() {
  base::AutoLock locker(lock());
  Release();  // To match CloseImplNoLock.
  if (transferable_) {
    if (channel_) {
      channel_->Shutdown();
      channel_ = nullptr;
    }
  } else {
    if (non_transferable_state_ == CONNECT_CALLED ||
        non_transferable_state_ == WAITING_FOR_READ_OR_WRITE) {
      if (non_transferable_state_ == WAITING_FOR_READ_OR_WRITE)
        RequestNontransferableChannel();

      // We can't cancel the pending request yet, since the other side of the
      // message pipe would want to get pending outgoing messages (if any) or
      // at least know that this end was closed. So keep this object alive until
      // then.
      non_transferable_state_ = WAITING_FOR_CONNECT_TO_CLOSE;
      AddRef();
    } else if (non_transferable_state_ == CONNECTED) {
      internal::g_broker->CloseMessagePipe(pipe_id_, this);
      non_transferable_state_ = CLOSED;
      channel_ = nullptr;
    }
  }
}

Dispatcher::Type MessagePipeDispatcher::GetType() const {
  return Type::MESSAGE_PIPE;
}

void MessagePipeDispatcher::GotNonTransferableChannel(RawChannel* channel) {
  base::AutoLock locker(lock());
  channel_ = channel;
  while (!non_transferable_outgoing_message_queue_.IsEmpty()) {
    channel_->WriteMessage(
        non_transferable_outgoing_message_queue_.GetMessage());
  }

  if (non_transferable_state_ == WAITING_FOR_CONNECT_TO_CLOSE) {
    // We kept this object alive until it's connected, we can release it now.
    internal::g_broker->CloseMessagePipe(pipe_id_, this);
    non_transferable_state_ = CLOSED;
    channel_ = nullptr;
    base::MessageLoop::current()->ReleaseSoon(FROM_HERE, this);
  } else {
    non_transferable_state_ = CONNECTED;
  }
}

#if defined(OS_WIN)
// TODO(jam): this is copied from RawChannelWin till I figure out what's the
// best way we want to share this.
// Since this is used for serialization of messages read/written to a MP that
// aren't consumed by Mojo primitives yet, there could be an unbounded number of
// them when a MP is being sent. As a result, even for POSIX we will probably
// want to send the handles to the shell process and exchange them for tokens
// (since we can be sure that the shell will respond to our IPCs, compared to
// the other end where we're sending the MP to, which may not be reading...).
ScopedPlatformHandleVectorPtr GetReadPlatformHandles(
    size_t num_platform_handles,
    const void* platform_handle_table) {
  ScopedPlatformHandleVectorPtr rv(new PlatformHandleVector());
  rv->resize(num_platform_handles);

  const uint64_t* tokens =
      static_cast<const uint64_t*>(platform_handle_table);
  internal::g_broker->TokenToHandle(tokens, num_platform_handles, &rv->at(0));
  return rv.Pass();
}
#endif

scoped_refptr<MessagePipeDispatcher> MessagePipeDispatcher::Deserialize(
    const void* source,
    size_t size,
    PlatformHandleVector* platform_handles) {
  if (size != sizeof(SerializedMessagePipeHandleDispatcher)) {
    LOG(ERROR) << "Invalid serialized message pipe dispatcher (bad size)";
    return nullptr;
  }

  const SerializedMessagePipeHandleDispatcher* serialization =
      static_cast<const SerializedMessagePipeHandleDispatcher*>(source);

  scoped_refptr<MessagePipeDispatcher> rv(
      new MessagePipeDispatcher(serialization->transferable));
  if (!rv->transferable_) {
    rv->InitNonTransferable(serialization->pipe_id);
    return rv;
  }

  if (serialization->shared_memory_size !=
      (serialization->serialized_read_buffer_size +
       serialization->serialized_write_buffer_size +
       serialization->serialized_message_queue_size)) {
    LOG(ERROR) << "Invalid serialized message pipe dispatcher (bad struct)";
    return nullptr;
  }

  ScopedPlatformHandle platform_handle, shared_memory_handle;
  if (!GetHandle(serialization->platform_handle_index,
                 platform_handles, &platform_handle) ||
      !GetHandle(serialization->shared_memory_handle_index,
                 platform_handles, &shared_memory_handle)) {
    return nullptr;
  }

  char* serialized_read_buffer = nullptr;
  size_t serialized_read_buffer_size = 0;
  char* serialized_write_buffer = nullptr;
  size_t serialized_write_buffer_size = 0;
  char* message_queue_data = nullptr;
  size_t message_queue_size = 0;
  scoped_refptr<PlatformSharedBuffer> shared_buffer;
  scoped_ptr<PlatformSharedBufferMapping> mapping;
  if (shared_memory_handle.is_valid()) {
    shared_buffer = internal::g_platform_support->CreateSharedBufferFromHandle(
            serialization->shared_memory_size, shared_memory_handle.Pass());
    mapping = shared_buffer->Map(0, serialization->shared_memory_size);
    char* buffer = static_cast<char*>(mapping->GetBase());
    if (serialization->serialized_read_buffer_size) {
      serialized_read_buffer = buffer;
      serialized_read_buffer_size = serialization->serialized_read_buffer_size;
      buffer += serialized_read_buffer_size;
    }
    if (serialization->serialized_write_buffer_size) {
      serialized_write_buffer = buffer;
      serialized_write_buffer_size =
          serialization->serialized_write_buffer_size;
      buffer += serialized_write_buffer_size;
    }
    if (serialization->serialized_message_queue_size) {
      message_queue_data = buffer;
      message_queue_size = serialization->serialized_message_queue_size;
      buffer += message_queue_size;
    }
  }

  rv->write_error_ = serialization->write_error;

  std::vector<int> serialized_read_fds;
  std::vector<int> serialized_write_fds;
#if defined(OS_POSIX)
  std::vector<int> serialized_fds;
  size_t serialized_fds_index = 0;

  size_t total_fd_count = serialization->serialized_read_fds_length +
                          serialization->serialized_write_fds_length +
                          serialization->serialized_message_fds_length;
  for (size_t i = 0; i < total_fd_count; ++i) {
    ScopedPlatformHandle handle;
    if (!GetHandle(serialization->serialized_fds_index + i, platform_handles,
        &handle)) {
      ClosePlatformHandles(&serialized_fds);
      return nullptr;
    }
    serialized_fds.push_back(handle.release().handle);
  }

  serialized_read_fds.assign(
      serialized_fds.begin(),
      serialized_fds.begin() + serialization->serialized_read_fds_length);
  serialized_fds_index += serialization->serialized_read_fds_length;
  serialized_write_fds.assign(
      serialized_fds.begin() + serialized_fds_index,
      serialized_fds.begin() + serialized_fds_index +
          serialization->serialized_write_fds_length);
  serialized_fds_index += serialization->serialized_write_fds_length;
#endif

  while (message_queue_size) {
    size_t message_size;
    if (!MessageInTransit::GetNextMessageSize(
            message_queue_data, message_queue_size, &message_size)) {
      NOTREACHED() << "Couldn't read message size from serialized data.";
      return nullptr;
    }
    if (message_size > message_queue_size) {
      NOTREACHED() << "Invalid serialized message size.";
      return nullptr;
    }
    MessageInTransit::View message_view(message_size, message_queue_data);
    message_queue_size -= message_size;
    message_queue_data += message_size;

    // TODO(jam): Copied below from RawChannelWin. See commment above
    // GetReadPlatformHandles.
    ScopedPlatformHandleVectorPtr temp_platform_handles;
    if (message_view.transport_data_buffer()) {
      size_t num_platform_handles;
      const void* platform_handle_table;
      TransportData::GetPlatformHandleTable(
          message_view.transport_data_buffer(), &num_platform_handles,
          &platform_handle_table);

      if (num_platform_handles > 0) {
#if defined(OS_WIN)
        temp_platform_handles =
            GetReadPlatformHandles(num_platform_handles,
                                    platform_handle_table).Pass();
        if (!temp_platform_handles) {
          LOG(ERROR) << "Invalid number of platform handles received";
          return nullptr;
        }
#else
        temp_platform_handles.reset(new PlatformHandleVector());
        for (size_t i = 0; i < num_platform_handles; ++i)
          temp_platform_handles->push_back(
              PlatformHandle(serialized_fds[serialized_fds_index++]));
#endif
      }
    }

    // TODO(jam): Copied below from RawChannelWin. See commment above
    // GetReadPlatformHandles.
    scoped_ptr<MessageInTransit> message(new MessageInTransit(message_view));
    if (message_view.transport_data_buffer_size() > 0) {
      DCHECK(message_view.transport_data_buffer());
      message->SetDispatchers(TransportData::DeserializeDispatchers(
          message_view.transport_data_buffer(),
          message_view.transport_data_buffer_size(),
          temp_platform_handles.Pass()));
    }

    rv->message_queue_.AddMessage(message.Pass());
  }

  rv->Init(platform_handle.Pass(),
           serialized_read_buffer,
           serialized_read_buffer_size,
           serialized_write_buffer,
           serialized_write_buffer_size,
           &serialized_read_fds,
           &serialized_write_fds);

  if (message_queue_size) {  // Should be empty by now.
    LOG(ERROR) << "Invalid queued messages";
    return nullptr;
  }

  return rv;
}

MessagePipeDispatcher::MessagePipeDispatcher(bool transferable)
    : channel_(nullptr),
      serialized_read_fds_length_(0u),
      serialized_write_fds_length_(0u),
      serialized_message_fds_length_(0u),
      pipe_id_(0),
      non_transferable_state_(WAITING_FOR_READ_OR_WRITE),
      serialized_(false),
      calling_init_(false),
      write_error_(false),
      transferable_(transferable) {
}

MessagePipeDispatcher::~MessagePipeDispatcher() {
  // |Close()|/|CloseImplNoLock()| should have taken care of the channel. The
  // exception is if they posted a task to run CloseOnIO but the IO thread shut
  // down and so when it was deleting pending tasks it caused the last reference
  // to destruct this object. In that case, safe to destroy the channel.
  if (channel_ &&
      internal::g_io_thread_task_runner->RunsTasksOnCurrentThread()) {
    if (transferable_) {
      channel_->Shutdown();
    } else {
      internal::g_broker->CloseMessagePipe(pipe_id_, this);
    }
  } else {
    DCHECK(!channel_);
  }
#if defined(OS_POSIX)
  ClosePlatformHandles(&serialized_fds_);
#endif
}

void MessagePipeDispatcher::CancelAllAwakablesNoLock() {
  lock().AssertAcquired();
  awakable_list_.CancelAll();
}

void MessagePipeDispatcher::CloseImplNoLock() {
  lock().AssertAcquired();
  // This early circuit fixes leak in unit tests. There's nothing to do in the
  // posted task.
  if (!transferable_ && non_transferable_state_ == CLOSED)
    return;

  // We take a manual refcount because at shutdown, the task below might not get
  // a chance to execute. If that happens, the RawChannel will still call our
  // OnError method because it always runs (since it watches thread
  // destruction). So to avoid UAF, manually add a reference and only release it
  // if the task runs.
  AddRef();
  internal::g_io_thread_task_runner->PostTask(
      FROM_HERE, base::Bind(&MessagePipeDispatcher::CloseOnIO, this));
}

void MessagePipeDispatcher::SerializeInternal() {
  serialized_ = true;
  if (!transferable_) {
    CHECK(non_transferable_state_ == WAITING_FOR_READ_OR_WRITE)
        << "Non transferable message pipe being sent after read/write/waited. "
        << "MOJO_CREATE_MESSAGE_PIPE_OPTIONS_FLAG_TRANSFERABLE must be used if "
        << "the pipe can be sent after it's read or written. This message pipe "
        << "was previously bound at:\n"
        << non_transferable_bound_stack_->ToString();

    non_transferable_state_ = SERIALISED;
    return;
  }

  // We need to stop watching handle immediately, even though not on IO thread,
  // so that other messages aren't read after this.
  std::vector<int> serialized_read_fds, serialized_write_fds;
  if (channel_) {
    bool write_error = false;

    serialized_platform_handle_ = channel_->ReleaseHandle(
        &serialized_read_buffer_, &serialized_write_buffer_,
        &serialized_read_fds, &serialized_write_fds, &write_error);
    serialized_fds_.insert(serialized_fds_.end(), serialized_read_fds.begin(),
                          serialized_read_fds.end());
    serialized_read_fds_length_ = serialized_read_fds.size();
    serialized_fds_.insert(serialized_fds_.end(), serialized_write_fds.begin(),
                          serialized_write_fds.end());
    serialized_write_fds_length_ = serialized_write_fds.size();
    channel_ = nullptr;
  } else {
    // It's valid that the other side wrote some data and closed its end.
  }

  DCHECK(serialized_message_queue_.empty());
  while (!message_queue_.IsEmpty()) {
    scoped_ptr<MessageInTransit> message = message_queue_.GetMessage();

    // When MojoWriteMessage is called, the MessageInTransit doesn't have
    // dispatchers set and CreateEquivaent... is called since the dispatchers
    // can be referenced by others. here dispatchers aren't referenced by
    // others, but rawchannel can still call to them. so since we dont call
    // createequiv, manually call TransportStarted and TransportEnd.
    DispatcherVector dispatchers;
    if (message->has_dispatchers())
      dispatchers = *message->dispatchers();
    for (size_t i = 0; i < dispatchers.size(); ++i)
      dispatchers[i]->TransportStarted();

    // TODO(jam): this handling for dispatchers only works on windows where we
    // send transportdata as bytes instead of as parameters to sendmsg.
    message->SerializeAndCloseDispatchers();
    // cont'd below

    size_t main_buffer_size = message->main_buffer_size();
    size_t transport_data_buffer_size = message->transport_data() ?
        message->transport_data()->buffer_size() : 0;

    serialized_message_queue_.insert(
        serialized_message_queue_.end(),
        static_cast<const char*>(message->main_buffer()),
        static_cast<const char*>(message->main_buffer()) + main_buffer_size);

    // cont'd
    if (transport_data_buffer_size != 0) {
      // TODO(jam): copied from RawChannelWin::WriteNoLock(
      PlatformHandleVector* all_platform_handles =
          message->transport_data()->platform_handles();
      if (all_platform_handles) {
#if defined(OS_WIN)
        uint64_t* tokens = reinterpret_cast<uint64_t*>(
            static_cast<char*>(message->transport_data()->buffer()) +
            message->transport_data()->platform_handle_table_offset());
        internal::g_broker->HandleToToken(
            &all_platform_handles->at(0), all_platform_handles->size(), tokens);
        for (size_t i = 0; i < all_platform_handles->size(); i++)
          all_platform_handles->at(i) = PlatformHandle();
#else
        for (size_t i = 0; i < all_platform_handles->size(); i++) {
          serialized_fds_.push_back(all_platform_handles->at(i).handle);
          serialized_message_fds_length_++;
          all_platform_handles->at(i) = PlatformHandle();
        }
#endif
      }

      serialized_message_queue_.insert(
          serialized_message_queue_.end(),
          static_cast<const char*>(message->transport_data()->buffer()),
          static_cast<const char*>(message->transport_data()->buffer()) +
              transport_data_buffer_size);
    }

    for (size_t i = 0; i < dispatchers.size(); ++i)
      dispatchers[i]->TransportEnded();
  }
}

scoped_refptr<Dispatcher>
MessagePipeDispatcher::CreateEquivalentDispatcherAndCloseImplNoLock() {
  lock().AssertAcquired();

  SerializeInternal();

  scoped_refptr<MessagePipeDispatcher> rv(
      new MessagePipeDispatcher(transferable_));
  rv->serialized_ = true;
  if (transferable_) {
    rv->serialized_platform_handle_ = serialized_platform_handle_.Pass();
    serialized_message_queue_.swap(rv->serialized_message_queue_);
    serialized_read_buffer_.swap(rv->serialized_read_buffer_);
    serialized_write_buffer_.swap(rv->serialized_write_buffer_);
    serialized_fds_.swap(rv->serialized_fds_);
    rv->serialized_read_fds_length_ = serialized_read_fds_length_;
    rv->serialized_write_fds_length_ = serialized_write_fds_length_;
    rv->serialized_message_fds_length_ = serialized_message_fds_length_;
    rv->write_error_ = write_error_;
  } else {
    rv->pipe_id_ = pipe_id_;
    rv->non_transferable_state_ = non_transferable_state_;
  }
  return rv;
}

MojoResult MessagePipeDispatcher::WriteMessageImplNoLock(
    const void* bytes,
    uint32_t num_bytes,
    std::vector<DispatcherTransport>* transports,
    MojoWriteMessageFlags flags) {
  lock().AssertAcquired();

  DCHECK(!transports ||
         (transports->size() > 0 &&
          transports->size() <= GetConfiguration().max_message_num_handles));

  if (write_error_ ||
      (transferable_ && !channel_) ||
      (!transferable_ && non_transferable_state_ == CLOSED)) {
    return MOJO_RESULT_FAILED_PRECONDITION;
  }

  if (num_bytes > GetConfiguration().max_message_num_bytes)
    return MOJO_RESULT_RESOURCE_EXHAUSTED;
  scoped_ptr<MessageInTransit> message(new MessageInTransit(
      MessageInTransit::Type::MESSAGE, num_bytes, bytes));
  if (transports) {
    MojoResult result = AttachTransportsNoLock(message.get(), transports);
    if (result != MOJO_RESULT_OK)
      return result;
  }

  message->SerializeAndCloseDispatchers();
  if (!transferable_)
    message->set_route_id(pipe_id_);
  if (!transferable_ &&
      (non_transferable_state_ == WAITING_FOR_READ_OR_WRITE ||
       non_transferable_state_ == CONNECT_CALLED)) {
    if (non_transferable_state_ == WAITING_FOR_READ_OR_WRITE)
      RequestNontransferableChannel();
    non_transferable_outgoing_message_queue_.AddMessage(message.Pass());
  } else {
    channel_->WriteMessage(message.Pass());
  }

  return MOJO_RESULT_OK;
}

MojoResult MessagePipeDispatcher::ReadMessageImplNoLock(
    void* bytes,
    uint32_t* num_bytes,
    DispatcherVector* dispatchers,
    uint32_t* num_dispatchers,
    MojoReadMessageFlags flags) {
  lock().AssertAcquired();
  if (transferable_ && channel_) {
    channel_->EnsureLazyInitialized();
  } else if (!transferable_) {
    if (non_transferable_state_ == WAITING_FOR_READ_OR_WRITE) {
      RequestNontransferableChannel();
      return MOJO_RESULT_SHOULD_WAIT;
    } else if (non_transferable_state_ == CONNECT_CALLED) {
      return MOJO_RESULT_SHOULD_WAIT;
    }
  }

  DCHECK(!dispatchers || dispatchers->empty());

  const uint32_t max_bytes = !num_bytes ? 0 : *num_bytes;
  const uint32_t max_num_dispatchers = num_dispatchers ? *num_dispatchers : 0;

  if (message_queue_.IsEmpty())
    return channel_ ? MOJO_RESULT_SHOULD_WAIT : MOJO_RESULT_FAILED_PRECONDITION;

  // TODO(vtl): If |flags & MOJO_READ_MESSAGE_FLAG_MAY_DISCARD|, we could pop
  // and release the lock immediately.
  bool enough_space = true;
  MessageInTransit* message = message_queue_.PeekMessage();
  if (num_bytes)
    *num_bytes = message->num_bytes();
  if (message->num_bytes() <= max_bytes)
    memcpy(bytes, message->bytes(), message->num_bytes());
  else
    enough_space = false;

  if (DispatcherVector* queued_dispatchers = message->dispatchers()) {
    if (num_dispatchers)
      *num_dispatchers = static_cast<uint32_t>(queued_dispatchers->size());
    if (enough_space) {
      if (queued_dispatchers->empty()) {
        // Nothing to do.
      } else if (queued_dispatchers->size() <= max_num_dispatchers) {
        DCHECK(dispatchers);
        dispatchers->swap(*queued_dispatchers);
      } else {
        enough_space = false;
      }
    }
  } else {
    if (num_dispatchers)
      *num_dispatchers = 0;
  }

  message = nullptr;

  if (enough_space || (flags & MOJO_READ_MESSAGE_FLAG_MAY_DISCARD)) {
    message_queue_.DiscardMessage();

    // Now it's empty, thus no longer readable.
    if (message_queue_.IsEmpty()) {
      // It's currently not possible to wait for non-readability, but we should
      // do the state change anyway.
      awakable_list_.AwakeForStateChange(GetHandleSignalsStateImplNoLock());
    }
  }

  if (!enough_space)
    return MOJO_RESULT_RESOURCE_EXHAUSTED;

  return MOJO_RESULT_OK;
}

HandleSignalsState MessagePipeDispatcher::GetHandleSignalsStateImplNoLock()
    const {
  lock().AssertAcquired();

  HandleSignalsState rv;
  if (!message_queue_.IsEmpty())
    rv.satisfied_signals |= MOJO_HANDLE_SIGNAL_READABLE;
  if (!message_queue_.IsEmpty() ||
      (transferable_ && channel_) ||
      (!transferable_ && non_transferable_state_ != CLOSED))
    rv.satisfiable_signals |= MOJO_HANDLE_SIGNAL_READABLE;
  if (!write_error_ &&
      ((transferable_ && channel_) ||
       (!transferable_ && non_transferable_state_ != CLOSED))) {
    rv.satisfied_signals |= MOJO_HANDLE_SIGNAL_WRITABLE;
    rv.satisfiable_signals |= MOJO_HANDLE_SIGNAL_WRITABLE;
  }
  if (write_error_ ||
      (transferable_ && !channel_) ||
       (!transferable_ &&
        ((non_transferable_state_ == CLOSED) || is_closed()))) {
    rv.satisfied_signals |= MOJO_HANDLE_SIGNAL_PEER_CLOSED;
  }
  rv.satisfiable_signals |= MOJO_HANDLE_SIGNAL_PEER_CLOSED;
  return rv;
}

MojoResult MessagePipeDispatcher::AddAwakableImplNoLock(
    Awakable* awakable,
    MojoHandleSignals signals,
    uintptr_t context,
    HandleSignalsState* signals_state) {
  lock().AssertAcquired();
  if (transferable_ && channel_) {
    channel_->EnsureLazyInitialized();
  } else if (!transferable_ &&
             non_transferable_state_ == WAITING_FOR_READ_OR_WRITE) {
    RequestNontransferableChannel();
  }

  HandleSignalsState state = GetHandleSignalsStateImplNoLock();
  if (state.satisfies(signals)) {
    if (signals_state)
      *signals_state = state;
    return MOJO_RESULT_ALREADY_EXISTS;
  }
  if (!state.can_satisfy(signals)) {
    if (signals_state)
      *signals_state = state;
    return MOJO_RESULT_FAILED_PRECONDITION;
  }

  awakable_list_.Add(awakable, signals, context);
  return MOJO_RESULT_OK;
}

void MessagePipeDispatcher::RemoveAwakableImplNoLock(
    Awakable* awakable,
    HandleSignalsState* signals_state) {
  lock().AssertAcquired();

  awakable_list_.Remove(awakable);
  if (signals_state)
    *signals_state = GetHandleSignalsStateImplNoLock();
}

void MessagePipeDispatcher::StartSerializeImplNoLock(
    size_t* max_size,
    size_t* max_platform_handles) {
  if (!serialized_)
    SerializeInternal();

  *max_platform_handles = 0;
  if (serialized_platform_handle_.is_valid())
    (*max_platform_handles)++;
  if (!serialized_read_buffer_.empty() ||
      !serialized_write_buffer_.empty() ||
      !serialized_message_queue_.empty())
    (*max_platform_handles)++;
  *max_platform_handles += serialized_fds_.size();
  *max_size = sizeof(SerializedMessagePipeHandleDispatcher);
}

bool MessagePipeDispatcher::EndSerializeAndCloseImplNoLock(
    void* destination,
    size_t* actual_size,
    PlatformHandleVector* platform_handles) {
  CloseImplNoLock();
  SerializedMessagePipeHandleDispatcher* serialization =
      static_cast<SerializedMessagePipeHandleDispatcher*>(destination);
  serialization->transferable = transferable_;
  serialization->pipe_id = pipe_id_;
  if (serialized_platform_handle_.is_valid()) {
    serialization->platform_handle_index = platform_handles->size();
    platform_handles->push_back(serialized_platform_handle_.release());
  } else {
    serialization->platform_handle_index = kInvalidMessagePipeHandleIndex;
  }

  serialization->write_error = write_error_;
  serialization->serialized_read_buffer_size = serialized_read_buffer_.size();
  serialization->serialized_write_buffer_size = serialized_write_buffer_.size();
  serialization->serialized_message_queue_size =
      serialized_message_queue_.size();

  serialization->shared_memory_size = static_cast<uint32_t>(
      serialization->serialized_read_buffer_size +
      serialization->serialized_write_buffer_size +
      serialization->serialized_message_queue_size);
  if (serialization->shared_memory_size) {
    scoped_refptr<PlatformSharedBuffer> shared_buffer(
        internal::g_platform_support->CreateSharedBuffer(
            serialization->shared_memory_size));
    scoped_ptr<PlatformSharedBufferMapping> mapping(
        shared_buffer->Map(0, serialization->shared_memory_size));
    char* start = static_cast<char*>(mapping->GetBase());
    start = SerializeBuffer(start, &serialized_read_buffer_);
    start = SerializeBuffer(start, &serialized_write_buffer_);
    start = SerializeBuffer(start, &serialized_message_queue_);

    serialization->shared_memory_handle_index = platform_handles->size();
    platform_handles->push_back(shared_buffer->PassPlatformHandle().release());
  } else {
    serialization->shared_memory_handle_index = kInvalidMessagePipeHandleIndex;
  }

  serialization->serialized_read_fds_length = serialized_read_fds_length_;
  serialization->serialized_write_fds_length = serialized_write_fds_length_;
  serialization->serialized_message_fds_length = serialized_message_fds_length_;
  if (serialized_fds_.empty()) {
    serialization->serialized_fds_index = kInvalidMessagePipeHandleIndex;
  } else {
#if defined(OS_POSIX)
    serialization->serialized_fds_index = platform_handles->size();
    for (size_t i = 0; i < serialized_fds_.size(); ++i)
      platform_handles->push_back(PlatformHandle(serialized_fds_[i]));
    serialized_fds_.clear();
#endif
  }

  *actual_size = sizeof(SerializedMessagePipeHandleDispatcher);
  return true;
}

void MessagePipeDispatcher::TransportStarted() {
  started_transport_.Acquire();
}

void MessagePipeDispatcher::TransportEnded() {
  started_transport_.Release();

  base::AutoLock locker(lock());

  // If transporting of MPD failed, we might have got more data and didn't
  // awake for.
  // TODO(jam): should we care about only alerting if it was empty before
  // TransportStarted?
  if (!message_queue_.IsEmpty())
    awakable_list_.AwakeForStateChange(GetHandleSignalsStateImplNoLock());
}

void MessagePipeDispatcher::OnReadMessage(
    const MessageInTransit::View& message_view,
    ScopedPlatformHandleVectorPtr platform_handles) {
  scoped_ptr<MessageInTransit> message(new MessageInTransit(message_view));
  if (message_view.transport_data_buffer_size() > 0) {
    DCHECK(message_view.transport_data_buffer());
    message->SetDispatchers(TransportData::DeserializeDispatchers(
        message_view.transport_data_buffer(),
        message_view.transport_data_buffer_size(), platform_handles.Pass()));
  }

  if (started_transport_.Try()) {
    // we're not in the middle of being sent

    // Can get synchronously called back in Init if there was initial data.
    scoped_ptr<base::AutoLock> locker;
    if (!calling_init_) {
      locker.reset(new base::AutoLock(lock()));
    }

    bool was_empty = message_queue_.IsEmpty();
    message_queue_.AddMessage(message.Pass());
    if (was_empty)
      awakable_list_.AwakeForStateChange(GetHandleSignalsStateImplNoLock());

    started_transport_.Release();
  } else {
    // If RawChannel is calling OnRead, that means it has its read_lock_
    // acquired. That means StartSerialize can't be accessing message queue as
    // it waits on ReleaseHandle first which acquires readlock_.
    message_queue_.AddMessage(message.Pass());
  }
}

void MessagePipeDispatcher::OnError(Error error) {
  // If there's a read error, then the other side of the pipe is closed. By
  // definition, we can't write since there's no one to read it. And we can't
  // read anymore, since we just got a read erorr. So we close the pipe.
  // If there's a write error, then we stop writing. But we keep the pipe open
  // until we finish reading everything in it. This is because it's valid for
  // one endpoint to write some data and close their pipe immediately. Even
  // though the other end can't write anymore, it should still get all the data.
  switch (error) {
    case ERROR_READ_SHUTDOWN:
      // The other side was cleanly closed, so this isn't actually an error.
      DVLOG(1) << "MessagePipeDispatcher read error (shutdown)";
      break;
    case ERROR_READ_BROKEN:
      LOG(ERROR) << "MessagePipeDispatcher read error (connection broken)";
      break;
    case ERROR_READ_BAD_MESSAGE:
      // Receiving a bad message means either a bug, data corruption, or
      // malicious attack (probably due to some other bug).
      LOG(ERROR) << "MessagePipeDispatcher read error (received bad message)";
      break;
    case ERROR_READ_UNKNOWN:
      LOG(ERROR) << "MessagePipeDispatcher read error (unknown)";
      break;
    case ERROR_WRITE:
      // Write errors are slightly notable: they probably shouldn't happen under
      // normal operation (but maybe the other side crashed).
      LOG(WARNING) << "MessagePipeDispatcher write error";
      DCHECK_EQ(write_error_, false) << "Should only get one write error.";
      write_error_ = true;
      break;
  }

  if (started_transport_.Try()) {
    base::AutoLock locker(lock());
    // We can get two OnError callbacks before the post task below completes.
    // Although RawChannel still has a pointer to this object until Shutdown is
    // called, that is safe since this class always does a PostTask to the IO
    // thread to self destruct.
    if (channel_ && error != ERROR_WRITE) {
      if (transferable_) {
        channel_->Shutdown();
      } else {
        CHECK_NE(non_transferable_state_, CLOSED);
        internal::g_broker->CloseMessagePipe(pipe_id_, this);
        non_transferable_state_ = CLOSED;
      }
      channel_ = nullptr;
    }
    awakable_list_.AwakeForStateChange(GetHandleSignalsStateImplNoLock());
    started_transport_.Release();
  } else {
    // We must be waiting to call ReleaseHandle. It will call Shutdown.
  }
}

MojoResult MessagePipeDispatcher::AttachTransportsNoLock(
    MessageInTransit* message,
    std::vector<DispatcherTransport>* transports) {
  DCHECK(!message->has_dispatchers());

  // You're not allowed to send either handle to a message pipe over the message
  // pipe, so check for this. (The case of trying to write a handle to itself is
  // taken care of by |Core|. That case kind of makes sense, but leads to
  // complications if, e.g., both sides try to do the same thing with their
  // respective handles simultaneously. The other case, of trying to write the
  // peer handle to a handle, doesn't make sense -- since no handle will be
  // available to read the message from.)
  for (size_t i = 0; i < transports->size(); i++) {
    if (!(*transports)[i].is_valid())
      continue;
    if ((*transports)[i].GetType() == Dispatcher::Type::MESSAGE_PIPE) {
      MessagePipeDispatcher* mp =
          static_cast<MessagePipeDispatcher*>(((*transports)[i]).dispatcher());
      if (transferable_ && mp->transferable_ &&
          channel_ && mp->channel_ && channel_->IsOtherEndOf(mp->channel_)) {
        // The other case should have been disallowed by |Core|. (Note: |port|
        // is the peer port of the handle given to |WriteMessage()|.)
        return MOJO_RESULT_INVALID_ARGUMENT;
      } else if (!transferable_ && !mp->transferable_ &&
                 pipe_id_ == mp->pipe_id_) {
        return MOJO_RESULT_INVALID_ARGUMENT;
      }
    }
  }

  // Clone the dispatchers and attach them to the message. (This must be done as
  // a separate loop, since we want to leave the dispatchers alone on failure.)
  scoped_ptr<DispatcherVector> dispatchers(new DispatcherVector());
  dispatchers->reserve(transports->size());
  for (size_t i = 0; i < transports->size(); i++) {
    if ((*transports)[i].is_valid()) {
      dispatchers->push_back(
          (*transports)[i].CreateEquivalentDispatcherAndClose());
    } else {
      LOG(WARNING) << "Enqueueing null dispatcher";
      dispatchers->push_back(nullptr);
    }
  }
  message->SetDispatchers(dispatchers.Pass());
  return MOJO_RESULT_OK;
}

void MessagePipeDispatcher::RequestNontransferableChannel() {
  lock().AssertAcquired();
  CHECK(!transferable_);
  CHECK_EQ(non_transferable_state_, WAITING_FOR_READ_OR_WRITE);
  non_transferable_state_ = CONNECT_CALLED;
#if !defined(OFFICIAL_BUILD)
  non_transferable_bound_stack_.reset(new base::debug::StackTrace);
#endif

  // PostTask since the broker can call us back synchronously.
  internal::g_io_thread_task_runner->PostTask(
      FROM_HERE,
      base::Bind(&Broker::ConnectMessagePipe,
                 base::Unretained(internal::g_broker), pipe_id_,
                 base::Unretained(this)));
}

}  // namespace edk
}  // namespace mojo